Fluid Mechanics Fundamentals And Applications
3rd Edition
ISBN: 9780073380322
Author: Yunus Cengel, John Cimbala
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 114P
Consider two water tanks filled with water. The first tank is 8 m high and is stationary, while the second tank is 2 m high and is moving upward with an acceleration of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider two tanks filled with water. The first tank is 8 m high and is stationary, while the second tank is 2 m high and is moving upward with an acceleration of 5 m/s^2. Calculate the pressure of each tank at the bottom.
i need the answer quickly
Consider two water tanks filled with water. The first tank is 8 m high and is stationary, while the second tank is 2 m high and is moving upward with an acceleration of 5 m/s2. Which tank will have a higher pressure at the bottom
Chapter 3 Solutions
Fluid Mechanics Fundamentals And Applications
Ch. 3 - Someone claims that the absolute pressure in a...Ch. 3 - A tinysteel cube is suspended in water by a...Ch. 3 - Express Pascal’s law, and give a real-world...Ch. 3 - Consider two identical fans, one at sea level and...Ch. 3 - What is the difference between gage pressure and...Ch. 3 - Explain why some people experience nose bleeding...Ch. 3 - Prob. 7PCh. 3 - A vacuum gage connected to a chamber reads 36 kPa...Ch. 3 - The pressure at the exit of an air compressor is...Ch. 3 - The pressure in a water line is 1500 kPa. What is...
Ch. 3 - A manometer is used to measure the air pressure in...Ch. 3 - The water in a tank is pressurized by air, and the...Ch. 3 - Determine the atmospheric pressure at a location...Ch. 3 - The gagepressure in a liquid at a depth of 2.5 m...Ch. 3 - The absolute pressure in water at a depth of 8 m...Ch. 3 - Show that 1kgf/cm2=14.223psi .Ch. 3 - Prob. 17EPCh. 3 - Consider a 55-kg woman who has a total foot...Ch. 3 - A vacuum gage connected to a tank reads 45 kPa at...Ch. 3 - Prob. 20EPCh. 3 - A pressure gage connected to a tank reads 500kPa...Ch. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Water from a reservoir is raised in a vertical...Ch. 3 - The barometer of a mountain hiker reads 980 mbars...Ch. 3 - The basic barometer can be used to measure the...Ch. 3 - Prob. 28PCh. 3 - Prob. 29EPCh. 3 - A gas is contained in a vertical, frictionless...Ch. 3 - Both a gage and a manometer are attached to a gas...Ch. 3 - The variation of pressure P in a gas with density ...Ch. 3 - The system shown in the figure is used to...Ch. 3 - The manometer shown in the figure is designed to...Ch. 3 - A manometer containing ( =850kg/m3 ) attached to a...Ch. 3 - A mercury ( =13,600kg/m3 ) is connected to an air...Ch. 3 - Repeat Prob. 3-37 for a differential mercury...Ch. 3 - Blood pressure is usually measured by rapping a...Ch. 3 - The maximum blood pressure in the upper arm of a...Ch. 3 - Consider a 1.73-m-tall man standing vertically in...Ch. 3 - Consider a U-tube whose arms are open to the...Ch. 3 - Prob. 44PCh. 3 - Freshwater and seamier flowing in parallel...Ch. 3 - Repeat Prob. 3-48 by replacing the air with oil...Ch. 3 - The pressure in a natural gas pipeline is measured...Ch. 3 - Repeat Prob. 3-42E by replacing air by oil with a...Ch. 3 - The gage pressure of the air in the tank shown in...Ch. 3 - Repeat Prob. 3-44 for a gage pressure of 40 kPa.Ch. 3 - The 500-kg load on the hydraulic lift show in Fig....Ch. 3 - Prob. 52EPCh. 3 - Pressure is often given in terms of a liquid...Ch. 3 - Prob. 54PCh. 3 - Consider a double-fluid manometer attached to an...Ch. 3 - The pressure difference between an oil pipe and...Ch. 3 - Consider the system shown in Fig. P3-51. If a...Ch. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Define the resultant hydrostatic force acting on a...Ch. 3 - Someone claims that she can determine the...Ch. 3 - A submersed horizontal flat plate is suspended in...Ch. 3 - You may have noticed that dams are much thicker at...Ch. 3 - Consider a submerged curved surface. Explain how...Ch. 3 - Consider a submersed curved surface. Explain how...Ch. 3 - Consider a circular surface subjected to...Ch. 3 - Consider a heavy car submerged in water in a lake...Ch. 3 - A long, solid cylinder of radius 2 ft hinged at...Ch. 3 - Consider a 8-m-long, 8-m-wide, and 2-m-high...Ch. 3 - Consider a 200-ft-high, dam filled to capacity....Ch. 3 - A room the lower level of a cruise ship has a...Ch. 3 - The water side of the wall of a 70-m-long dam is a...Ch. 3 - For a gate width of 2 m into the paper (Fig....Ch. 3 - Determine the resultant force acting on the...Ch. 3 - A 6-m-high, 5-m-wide rectangular plate blocks the...Ch. 3 - The flow of water from a reservoir is controlled...Ch. 3 - Repeat Prob. 3-76E for a water height of 6 ft.Ch. 3 - A water trough of semicircular cross section of...Ch. 3 - Prob. 80PCh. 3 - An open settling tank shown in the figure contains...Ch. 3 - From Prob. 3-80, knowing that the density of the...Ch. 3 - Prob. 83PCh. 3 - The two sides of a V-shaped water trough are...Ch. 3 - Repeat Prob. 3-82 for the case of a partially...Ch. 3 - A retaining wall against a mud slide is to be...Ch. 3 - Prob. 87PCh. 3 - A 4-m-long quarter-circular gate of radius 3 m and...Ch. 3 - Repeat Prob. 3-90 for a radius of 2 m for the...Ch. 3 - Consider a flat plate of thickness t, width w into...Ch. 3 - Prob. 91PCh. 3 - Consider a 1-m wide inclined gate of negligible...Ch. 3 - Prob. 93PCh. 3 - What is buoyant force? What causes it? What is the...Ch. 3 - Consider two identical spherical bails submerged...Ch. 3 - Consider two 5-cm-diaineter spherical balls-one...Ch. 3 - Prob. 97CPCh. 3 - Prob. 98CPCh. 3 - The density of a liquid is to be determined by an...Ch. 3 - A crane is used to lower weights into a lake for...Ch. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - It is estimated that 90 percent of an iceberg’s...Ch. 3 - The weight of a body is usually measured by...Ch. 3 - Prob. 106PCh. 3 - Prob. 107PCh. 3 - The hull of a boat has a volume of 180 m3, and the...Ch. 3 - Under what conditions can a moving body of fluid...Ch. 3 - Consider a glass of water. Compare the water...Ch. 3 - Consider two identical glasses of water, one...Ch. 3 - Consider a vertical cylindrical container...Ch. 3 - Prob. 113PCh. 3 - Consider two water tanks filled with water. The...Ch. 3 - Prob. 115PCh. 3 - A 3-ft-diameter vertical cylindrical lank open to...Ch. 3 - Prob. 117PCh. 3 - A 30-cm-diameter, 90-cm-high vertical cylindrical...Ch. 3 - A fish tank that contains 60-cm-high water is...Ch. 3 - A 3-m-diameter vertical cylindrical milk tank...Ch. 3 - Consider a tank of rectangular cross-section...Ch. 3 - The bottom quarter of a vertical cylindrical tank...Ch. 3 - Milk with a density of 1020 kg/m3 is transported...Ch. 3 - Prob. 124PCh. 3 - The distance between the centers of the two arms...Ch. 3 - A 1.2-m-diameter, 3-m-high scaled vertical...Ch. 3 - A15-ft-long, 6-ft-high rectangular tank open to...Ch. 3 - An 8-ft-long tank open to the atmosphere initially...Ch. 3 - A 3-m-diameter, 7-m-long cylindrical tank is...Ch. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133PCh. 3 - Prob. 134PCh. 3 - An air-conditioning system requires a 34-m-long...Ch. 3 - Prob. 136PCh. 3 - If the rate of rotational speed of the 3-tube...Ch. 3 - A 30-cm-diameter vertical cylindrical vessel is...Ch. 3 - Prob. 139PCh. 3 - Prob. 141PCh. 3 - Prob. 142EPCh. 3 - The basic barometer can be used as an...Ch. 3 - The lower half of a 12-m-high cylindrical...Ch. 3 - A vertical, frictionless pistoncylinder device...Ch. 3 - A pressure cooker cooks a lot faster than an...Ch. 3 - Prob. 147PCh. 3 - The average atmospheric pressure on earth is...Ch. 3 - When measuring small pressure differences with a...Ch. 3 - Prob. 150EPCh. 3 - Prob. 151PCh. 3 - A gasoline line is connected to a pressure gage...Ch. 3 - Prob. 154PCh. 3 - Prob. 155EPCh. 3 - The pressure of water flowing through a pipe is...Ch. 3 - Consider a U-tube filled with mercury as shown in...Ch. 3 - Prob. 158PCh. 3 - The variation of pressure with density in a thick...Ch. 3 - A 3-m-high. 5-m-wide rectangular gale is hinged al...Ch. 3 - Prob. 161PCh. 3 - A semicircular 40-ft-diameter tunnel is to be...Ch. 3 - A 30-ton. 4-m-diameter hemispherical dome on a...Ch. 3 - The water in a 25-m-deep reservoir is kept inside...Ch. 3 - Prob. 165PCh. 3 - A 1-m-diameter, 2-m-high vertical cylinder is...Ch. 3 - A 5-m-long, 4-m-high tank contains 2.5-m-deep...Ch. 3 - Prob. 169PCh. 3 - Prob. 170PCh. 3 - The density of a floating body can be determined...Ch. 3 - The 280-ke, 6-m-wide rectangular gate shown in Fig...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - Prob. 175PCh. 3 - The gage pressure in a pipe is measured by a...Ch. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Prob. 179PCh. 3 - Consider the vertical rectangular wall of a water...Ch. 3 - Prob. 181PCh. 3 - Prob. 182PCh. 3 - Prob. 183PCh. 3 - Prob. 184PCh. 3 - Prob. 185PCh. 3 - Consider a 6-m-diameter spherical sate holding a...Ch. 3 - Prob. 188PCh. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - A 15-cm-diameter, 40-cm-high vertical cylindrical...Ch. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - Shoes are to be designed to enable people of up to...Ch. 3 - The volume of a rock is to be determined without...Ch. 3 - The density of stainless steel is about 8000 kg/m3...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I need solve this question in quickly time please pleasearrow_forwardInclude an FBD Diagaram Consider two water tanks filled with water. The first tank is 8 m high and is stationary, while the second tank is 2 m high and is moving upward with an acceleration of 5 m/s2. Which of the two tanks will have a higher pressure at the bottom?arrow_forwardQ2arrow_forward
- A multifluid container is connected to a U-tube, as shown in the figure. For the given specific gravitles and fluid column heights. determine the gage pressure at A. Also determine the height of a mercury column that would create the same pressure at A. The column heighth of oil is 86 cm. The specific gravitles are 1.26 for glycerin and 0.90 for oll. We take the standard density of water to be Pw=1000 kg/m³ and the specific gravity of mercury to be 13.6. h 35 cm 18 cm Į Oil SG-0.90 Water Glycerin SG-1.26 90 cm 15 cm The gage pressure at A is kPa. The height of a mercury column that would create the same pressure at A is cm.arrow_forwardConsider a differential manometer whose ends are connected to two different pipes A and B and containing different liquids at different levels. Let us assume that the pressure at point A is more than that at point B. Oil is in pipe A whose density 800 kg/m3 shows a difference in mercury levels as 100 mm. The height of oil between center of pipe A to the mercury level in left limb is 200 mm. Methanol (relative density = 0.791) is in pipe B and the height of Methanol between center of pipe B and mercury level in the right limb is 5 cm. Calculate the difference in pressures at the two points A and B.arrow_forwardHelparrow_forward
- An open circular cylinder of 20 cm diameter and 120 cm long contains water up to a height of 80 cm. It is rotated about its vertical axis at 400 rpm. Find the difference in the total force in N at the sides of the cylinder due to rotation.arrow_forwardBottle was filled with water and a hole is punched in the bottle.When the bottle is closed, water does not come out of the hole. However, when the bottle is open, water comes out of the hole. Other information would be - Atmospheric pressure is 1 atm (101325 Pa) - Assume bottle is 20 cm and the hole is on the 10 cm above the bottom of the bottle (use it as reference level) Define the pressure(s) acting at the hole when the bottle is open and calculate total pressure. Define the pressure(s) acting at the hole when the bottle is closed and calculate total pressure. Using the results from part a and b, why does water come out when the bottle is open and why does not it come out when the bottle is closed?arrow_forwardI need the answer as soon as possiblearrow_forward
- Consider a differential manometer whose ends are connected to two different pipes A andB and containing different liquids at different levels. Let us assume that the pressure at point A is more than that at point B. Oil is in pipe A whose density 800 kg/m³ shows a difference in mercury levels as 100 mm. The height of oil between center of pipe A to the mercury level in left limb is 200 mm. Methanol (relative density 0.791) is in pipe B and the height of Methanol between center of pipe B and mercury level in the right limb is 5 cm. Calculate the difference in pressures at the two points A and B.arrow_forwardOpen tank (4 m long, 3 m height and 3 m wide) contains liquid (S-0.8) to height 1.5 m. If this tank is accelerated along its length on a horizontal truck at a constant value of 2.5 m/s², determine pressure at the bottom of the tank at front and rear edges (in kN/m?). (take y-9.8 kN/m³ for water)arrow_forwardA cylindrical tank is fully filled with water (Fig. P3–67).In order to increase the flow from the tank, an additionalpressure is applied to the water surface by a compressor. ForP0 = 0, P0 = 5 bar, and P0 = 10 bar, calculate the hydrostaticforce on the surface A exerted by water.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY