Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 41P
(a)
To determine
The condition for the higher energy states.
(b)
To determine
The energy difference between the states.
(c)
To determine
The uncertainty in energy of the excited energy level.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hypothetical atom has only two atomic energy levels, separated by 3.2 eV. Suppose that at a certain altitude in the atmosphere of a star there are 6.1 * 1013/cm3 of these atoms in the higher-energy state and 2.5 * 1015/cm3 in the lower-energy state. What is the temperature of the star’s atmosphere at that altitude?
When a hydrogen atom undergoes a transition from the n = 2 to the n = 1 level, a photon with l = 122 nm is emitted. If the atom is modeled as an electron in a one-dimensional box, what is the width of the box in order for the n = 2 to n = 1 transition to correspond to emission of a photon of this energy?
H-alpha line is a red visible spectral line in hydrogen atom with a wavelength of 656.3 nm. Consider five
distant stars labeled A, B, C, D, and E. The light from these starts was detected on Earth and, after
performing spectral analysis, the following H-alpha wavelengths were measured: A = 665.5 nm,
AB = 643.7 nm, Ac = 653.9 nm, Ap = 663 nm, and AE = 661.2 nm.
Which star has the slowest speed relative to Earth, in which direction and how fast does it move?
✓ Earth.
The slowest star is CV and it moves towards
The speed of the slowest star (in km/s), Vslowest
Which star has the fastest speed relative to Earth, in which direction and how fast does it move?
The fastest star is B ✓
and it moves towards
=
-1.095E12 X Units km/s
The speed of the fastest star (in km/s), Vfastest = -5.73E6
Earth.
x Units km/s
Chapter 29 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 29.2 - Prob. 29.1QQCh. 29.2 - Prob. 29.2QQCh. 29.4 - Prob. 29.3QQCh. 29.5 - Prob. 29.4QQCh. 29.6 - Prob. 29.5QQCh. 29.6 - Prob. 29.6QQCh. 29 - Prob. 1OQCh. 29 - Prob. 2OQCh. 29 - Prob. 3OQCh. 29 - Prob. 4OQ
Ch. 29 - Prob. 5OQCh. 29 - Prob. 6OQCh. 29 - Prob. 7OQCh. 29 - Prob. 8OQCh. 29 - Prob. 9OQCh. 29 - Prob. 10OQCh. 29 - Prob. 1CQCh. 29 - Prob. 2CQCh. 29 - Prob. 3CQCh. 29 - Prob. 4CQCh. 29 - Prob. 5CQCh. 29 - Prob. 6CQCh. 29 - Prob. 7CQCh. 29 - Prob. 8CQCh. 29 - Prob. 9CQCh. 29 - Prob. 10CQCh. 29 - Prob. 1PCh. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Prob. 4PCh. 29 - Prob. 5PCh. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - Prob. 15PCh. 29 - Prob. 16PCh. 29 - Prob. 17PCh. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - Prob. 28PCh. 29 - Prob. 29PCh. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 46PCh. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51PCh. 29 - Prob. 52PCh. 29 - Prob. 53PCh. 29 - Prob. 54PCh. 29 - Prob. 55PCh. 29 - Prob. 57PCh. 29 - Prob. 58PCh. 29 - Prob. 59PCh. 29 - Prob. 60PCh. 29 - Prob. 61PCh. 29 - Prob. 63PCh. 29 - Prob. 64PCh. 29 - Prob. 65PCh. 29 - Prob. 66P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When a hydrogen atom is in its ground state, what are the shortest and longest wavelengths of the photons it can absorb without being ionized?arrow_forwardFor an electron in a hydrogen atom, which of the following transitions would represent the largest quantum of energy being absorbed? Hydrogen Energy Transitions and Radiation Level n = ∞ n = 5 n = 4 486 nm n = 3 Infrared 434 nm 656 nm wavelengths n = 2 Visible wavelengths Ionization n = 1 Ultravioletarrow_forwardThe Lyman series of photons each have an energy capable of exciting the electron of a hydrogen atom from the ground state (energy level 1) to energy levels 2, 3, 4, etc. The wavelengths of the first five photons in this series are 121.6 nm, 102.6 nm, 97.3 nm, 95.0 nm, and 93.8 nm. The ground state energy of hydrogen is −13.6 eV. Based on the wavelengths of the Lyman series, calculate the energies of the first five excited states above ground level for a hydrogen atom to the nearest 0.1 eV.arrow_forward
- A hydrogen atom is in state N= 3, where N = 1 is the lowest energy state. What is K+U in electron volts for this atomic hydrogen energy state? E3 = eV The hydrogen atom makes a transition to state N = 2. What is K+U in electron volts for this lower atomic hydrogen energy state? E₂ = eV What is the energy in electron volts of the photon emitted in the transition from level N = 3 to N = 2? Ephoton = eVarrow_forwardA photoelectron is emitted from K shell (n = 1) of a carbon atom, and an election in L shell (n = 2) moves down to the vacancy in K shell. What is the wavelength, in the unit of nm, of the photon emitted during this transition? Use for the energy difference between two states in an atom. E0 = 13.6 eV and atomic number of carbon is Z = 12. Use σ = 1 for the transition to K shell and σ = 7.4 for the transition to L shellarrow_forwardDetermine the distance between the electron and proton in an atom if the potential energy UU of the electron is 11 eV (electronvolt, 1 eV =1.6×10−19=1.6×10−19 J). Give your answer in Angstrom (1 A = 10-10 m).arrow_forward
- A hydrogen atom emits a photon that has momentum 6.977 × 10-27 kg·m/s. This photon is emitted because the electron in the atom falls from a higher energy level into the n = 1 level. What is the quantum number of the level from which the electron falls? Use values of h = 6.626 × 10-34 J·s, c = 2.998 × 108 m/s, and e = 1.602 × 10-19 C.arrow_forwardIn solid helium the spacing between atoms is about 3Å . Helium contains 2 protons and 2 neutrons, so the mass of a helium atom is 6.6×10−27 kg. What is the smallest possible energy of a helium atom in solid helium? What temperature (in Kelvin) does this energy correspond with? (Boltzmann's constant is kb=1.38×10−23 J/Karrow_forwardAn electron with kinetic energy of 12.50 eV hits a hydrogen atom in its ground state. (a)Sketch the hydrogen energy level diagram, showing the transition to all possible excited state. (b) Find all the possible kinetic energies of the outgoing electron. (c) In the same sketch as part (a), draw all possible transitions when the atom relaxes and emits a photon. (d) Find the wavelengths of all the possible emission photons.arrow_forward
- The electron in a hydrogen atom jumps from the E5 eV ev E₁ = = What is the (positive) energy and wavelength of the photon emitted? eV E photon λ = λ = = n₁ 5 state to the nf = nm Follow the same steps to find the wavelength of the photon emitted when the electron in the hydrogen atom jumps from the n = nm = 1 state. What are the energies of these two states? 13 state to the and n₁ = 4 state.arrow_forwardA hydrogen atom in an n = 2, l = 1, ml = -1 state emits a photon when it decays to an n = 1, l = 0, ml = 0 ground state. In the absence of an external magnetic field, what is the wavelength of this photon?arrow_forwardUse the table to determine the energy in eV of the photon emitted when an electron jumps down from the n = 2 orbit to the n = 1 orbit of a hydrogen atom. Allowed Values of the Hydrogen Electron's Radius and Energy for Low Values of n n rn En 1 0.053 nm −13.60 eV 2 0.212 nm −3.40 eV 3 0.477 nm −1.51 eV 4 0.848 nm −0.85 eV eVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax