University Physics with Modern Physics (14th Edition)
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 29, Problem 29.67P

DATA You are conducting an experiment in which a metal bar of length 6.00 cm and mass 0.200 kg slides without friction on two parallel metal rails (Fig. P29.67). A resistor with resistance R = 0.800 Ω is connected across one end of the rails so that the bar, rails, and resistor form a complete conducting path. The resistances of the rails and of the bar are much less than R and can be ignored. The entire apparatus is in a uniform magnetic field B that is directed into the plane of the figure. You give the bar an initial velocity ʋ = 20.0 cm/s to the right and then release it, so that the only force on the bar then is the force exerted by the magnetic field. Using high-speed photography, you measure the magnitude of the acceleration of the bar as a function of its speed. Your results are given in the table:

Chapter 29, Problem 29.67P, DATA You are conducting an experiment in which a metal bar of length 6.00 cm and mass 0.200 kg , example  1

(a) Plot the data as a graph of a versus v. Explain why the data points plotted this way lie close to a straight line, and determine the slope of the best-fit straight line for the data. (b) Use your graph from part (a) to calculate the magnitude B of the magnetic field.(c) While the bar is moving, which end of the resistor, a or b, is at higher potential? (d) How many seconds does it take the speed of the bar to decrease from 20.0 cm/s to 10.0 cm/s?

Figure P29.67

Chapter 29, Problem 29.67P, DATA You are conducting an experiment in which a metal bar of length 6.00 cm and mass 0.200 kg , example  2

Blurred answer
Students have asked these similar questions
The plane of a square loop of wire with edge length a=0.200m is oriented Vertically and along an east west axis. The Earth’s magnitude field at this Points is of  magnitude B=35.0 µT and is directed north ward at 35.0° below The horizontal.The total resistance of the loop and the wires connecting it To a sensitive ammeter is 0.500Ω. If the loop is suddenly collapsed by horizontal Forces are shown in figure p30.37, what total charge enters one terminal of the Ammeter?
Two resistanceless rails rest 42 cm apart on a 6.6o ramp. They are joined at the bottom by a 0.68 Ω resistor. At the top, a copper bar of mass 0.034 kg (ignore its resistance) is laid across the rails. The whole apparatus is immersed in a vertical 0.35 T field. What is the terminal (steady) velocity of the bar as it slides frictionlessly down the rails?
The figure below shows two parallel conducting rails 18.8 cm apart, connected by a resistor with resistance  R3 = 5.00 Ω.  Two metal rods with resistances  R1 = 12.8 Ω  and  R2 = 15.0 Ω  slide along the rails with negligible friction. Rod  R1  slides to the left at constant speed  v1 = 4.00 m/s,  while rod  R2  slides at speed  v2 = 2.00 m/s.  The rods and rails are in the presence of a uniform magnetic field pointing into the page, perpendicular to the plane of the rails, with a magnitude of  Bin = 0.0100 T. Two parallel horizontal rails are vertically aligned and connected through their centers with a vertical wire containing resistor R3. A vertical rod labeled R1 lies vertically across the sides of the rails to the left of R3. An arrow labeled (vector v1) extends from the center of this left rod to the left. A vertical rod labeled R2 lies vertically across the sides of the rails to the right of R3. An arrow labeled (vector v2) extends from the center of this right rod to the right.…

Chapter 29 Solutions

University Physics with Modern Physics (14th Edition)

Ch. 29 - A long, straight conductor passes through the...Ch. 29 - A student asserted that if a permanent magnet is...Ch. 29 - An airplane is in level flight over Antarctica,...Ch. 29 - Consider the situation in Exercise 29.21. In part...Ch. 29 - Prob. 29.9DQCh. 29 - Prob. 29.10DQCh. 29 - Example 29.6 discusses the external force that...Ch. 29 - In the situation shown in Fig. 29.18, would it be...Ch. 29 - Prob. 29.13DQCh. 29 - Small one-cylinder gasoline engines sometimes use...Ch. 29 - Does Lenzs law say that the induced current in a...Ch. 29 - Does Faradays law say that a large magnetic flux...Ch. 29 - Can one have a displacement current as well as a...Ch. 29 - Prob. 29.18DQCh. 29 - Match the mathematical statements of Maxwells...Ch. 29 - If magnetic monopoles existed, the right-hand side...Ch. 29 - Prob. 29.21DQCh. 29 - A single loop of wire with an area of 0.0900 m2 is...Ch. 29 - In a physics laboratory experiment, a coil with...Ch. 29 - Search Coils and Credit Cards. One practical way...Ch. 29 - A closely wound search coil (see Exercise 29.3)...Ch. 29 - A circular loop of wire with a radius of 12.0 cm...Ch. 29 - CALC A coil 4.00 cm in radius, containing 500...Ch. 29 - Prob. 29.7ECh. 29 - CALC A flat, circular, steel loop of radius 75 cm...Ch. 29 - Shrinking Loop. A circular loop of flexible iron...Ch. 29 - A closely wound rectangular coil of 80 turns has...Ch. 29 - CALC In a region of space, a magnetic field points...Ch. 29 - In many magnetic resonance imaging (MRI) systems,...Ch. 29 - The armature of a small generator consists of a...Ch. 29 - A flat, rectangular coil of dimensions l and w is...Ch. 29 - A circular loop of wire is in a region of...Ch. 29 - The current I in a long, straight wire is constant...Ch. 29 - Two closed loops A and C are close to a long wire...Ch. 29 - The current in Fig. E29.18 obeys the equation I(t)...Ch. 29 - Prob. 29.19ECh. 29 - A cardboard tube is wrapped with two windings of...Ch. 29 - A small, circular ring is inside a larger loop...Ch. 29 - A circular loop of wire with radius r = 0.0480 m...Ch. 29 - CALC A circular loop of wire with radius r =...Ch. 29 - A rectangular loop of wire with dimensions 1.50 cm...Ch. 29 - In Fig. E29.25 a conducting rod of length L = 30.0...Ch. 29 - A rectangle measuring 30.0 cm by 40.0 cm is...Ch. 29 - Are Motional emfs a Practical Source of...Ch. 29 - Motional emfs in Transportation. Airplanes and...Ch. 29 - The conducting rod ab shown in Fig. E29.29 makes...Ch. 29 - A 0.650-m-long metal bar is pulled to the right at...Ch. 29 - A 0.360-m-long metal bar is pulled to the left by...Ch. 29 - Prob. 29.32ECh. 29 - A 0.250-m-long bar moves on parallel rails that...Ch. 29 - Prob. 29.34ECh. 29 - Prob. 29.35ECh. 29 - A metal ring 4.50 cm in diameter is placed between...Ch. 29 - Prob. 29.37ECh. 29 - Prob. 29.38ECh. 29 - A long, thin solenoid has 400 turns per meter and...Ch. 29 - Prob. 29.40ECh. 29 - A long, straight solenoid with a cross-sectional...Ch. 29 - Prob. 29.42ECh. 29 - Prob. 29.43ECh. 29 - CALC In Fig. 29.23 the capacitor plates have area...Ch. 29 - Prob. 29.45ECh. 29 - A very long, rectangular loop of wire can slide...Ch. 29 - CP CALC In the circuit shown in Fig. P29.47, the...Ch. 29 - Prob. 29.48PCh. 29 - CALC A very long, straight solenoid with a...Ch. 29 - Prob. 29.50PCh. 29 - In Fig. P29.51 the loop is being pulled lo the...Ch. 29 - Make a Generator? You are shipwrecked on a...Ch. 29 - A flexible circular loop 6.50 cm in diameter lies...Ch. 29 - CALC A conducting rod with length L = 0.200 m,...Ch. 29 - Prob. 29.55PCh. 29 - CP CALC Terminal Speed. A bar of length L = 0.36 m...Ch. 29 - CALC The long, straight wire shown in Fig. P29.57a...Ch. 29 - CALC A circular conducting ring with radius r0 =...Ch. 29 - CALC A slender rod, 0.240 m long, rotates with an...Ch. 29 - A 25.0-cm-long metal rod lies in the .xy-plane and...Ch. 29 - CP CALC A rectangular loop with width L and a...Ch. 29 - CALC An airplane propeller of total length L...Ch. 29 - The magnetic field B, at all points within a...Ch. 29 - CP CALC A capacitor has two parallel plates with...Ch. 29 - Prob. 29.65PCh. 29 - Prob. 29.66PCh. 29 - DATA You are conducting an experiment in which a...Ch. 29 - DATA You measure the magnitude of the external...Ch. 29 - A metal bar with length L, mass m, and resistance...Ch. 29 - CP CALC A square, conducting, wire loop of side L,...Ch. 29 - BIO STIMULATING THE BRAIN. Communication in the...Ch. 29 - BIO STIMULATING THE BRAIN. Communication in the...Ch. 29 - It may be desirable to increase the maximum...Ch. 29 - Which graph in Fig. P29.74 best represents the...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY