University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 29.32E
(a)
To determine
The induced current in the circuit clockwise or counter clockwise direction.
(b)
To determine
The speed of the bar.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
After being closed for a long time, the switch S in the circuit shown in the figure below is thrown open at
t = 0.
In the circuit,
= 24.0 V,
RA = 4.50 kΩ,
RB = 7.10 kΩ,
and
L = 513 mH.
(a) What is the emf across the inductor immediately after the switch is opened? V(b) When does the current in the resistor RB have a magnitude of 1.00 mA? s
After being closed for a long time, the switch S in the circuit shown in the figure below is thrown open at
t = 0.
In the circuit,
= 24.0 V,
RA = 4.50 kΩ,
RB = 6.70 kΩ,
and
L = 665 mH.
(a) What is the emf across the inductor immediately after the switch is opened? V(b) When does the current in the resistor RB have a magnitude of 1.00 mA? s
You are camping in the wilderness. After a few days, you are horrified to discover that you did not pack as many batteries
as you had planned, and you have no working batteries for your lights at night. Rummaging through the spare parts in the
back of your truck, you find an old motor. On the plate, the information claims that the motor operates from 120 v, rotating
at 1,600 rev/min, with an average back emf of 55.0 V. You wish to use the motor as a generator to provide a voltage with a
peak value of 8.00 V to operate your electric lantern. You attach a hand crank to the armature of the motor. You need to
determine the angular speed (in rev/s) at which you must rotate the crank to provide the desired voltage. Model the
armature as a flat coil of wire. Notice that the average back emf is provided, not the peak value, so you will need to find an
expression for the average back emf of a motor in terms of parameters associated with the armature.
rev/s
Chapter 29 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 29.2 - The accompanying figure shows a wire coil being...Ch. 29.3 - (a) Suppose the magnet in Fig. 29.14a were...Ch. 29.4 - The earths magnetic field points toward (magnetic)...Ch. 29.5 - If you wiggle a magnet back and forth in your...Ch. 29.6 - Prob. 29.6TYUCh. 29.7 - Prob. 29.7TYUCh. 29 - A sheet of copper is placed between the poles of...Ch. 29 - Prob. 29.2DQCh. 29 - Prob. 29.3DQCh. 29 - Prob. 29.4DQ
Ch. 29 - A long, straight conductor passes through the...Ch. 29 - A student asserted that if a permanent magnet is...Ch. 29 - An airplane is in level flight over Antarctica,...Ch. 29 - Consider the situation in Exercise 29.21. In part...Ch. 29 - Prob. 29.9DQCh. 29 - Prob. 29.10DQCh. 29 - Example 29.6 discusses the external force that...Ch. 29 - In the situation shown in Fig. 29.18, would it be...Ch. 29 - Prob. 29.13DQCh. 29 - Small one-cylinder gasoline engines sometimes use...Ch. 29 - Does Lenzs law say that the induced current in a...Ch. 29 - Does Faradays law say that a large magnetic flux...Ch. 29 - Can one have a displacement current as well as a...Ch. 29 - Prob. 29.18DQCh. 29 - Match the mathematical statements of Maxwells...Ch. 29 - If magnetic monopoles existed, the right-hand side...Ch. 29 - Prob. 29.21DQCh. 29 - A single loop of wire with an area of 0.0900 m2 is...Ch. 29 - In a physics laboratory experiment, a coil with...Ch. 29 - Search Coils and Credit Cards. One practical way...Ch. 29 - A closely wound search coil (see Exercise 29.3)...Ch. 29 - A circular loop of wire with a radius of 12.0 cm...Ch. 29 - CALC A coil 4.00 cm in radius, containing 500...Ch. 29 - Prob. 29.7ECh. 29 - CALC A flat, circular, steel loop of radius 75 cm...Ch. 29 - Shrinking Loop. A circular loop of flexible iron...Ch. 29 - A closely wound rectangular coil of 80 turns has...Ch. 29 - CALC In a region of space, a magnetic field points...Ch. 29 - In many magnetic resonance imaging (MRI) systems,...Ch. 29 - The armature of a small generator consists of a...Ch. 29 - A flat, rectangular coil of dimensions l and w is...Ch. 29 - A circular loop of wire is in a region of...Ch. 29 - The current I in a long, straight wire is constant...Ch. 29 - Two closed loops A and C are close to a long wire...Ch. 29 - The current in Fig. E29.18 obeys the equation I(t)...Ch. 29 - Prob. 29.19ECh. 29 - A cardboard tube is wrapped with two windings of...Ch. 29 - A small, circular ring is inside a larger loop...Ch. 29 - A circular loop of wire with radius r = 0.0480 m...Ch. 29 - CALC A circular loop of wire with radius r =...Ch. 29 - A rectangular loop of wire with dimensions 1.50 cm...Ch. 29 - In Fig. E29.25 a conducting rod of length L = 30.0...Ch. 29 - A rectangle measuring 30.0 cm by 40.0 cm is...Ch. 29 - Are Motional emfs a Practical Source of...Ch. 29 - Motional emfs in Transportation. Airplanes and...Ch. 29 - The conducting rod ab shown in Fig. E29.29 makes...Ch. 29 - A 0.650-m-long metal bar is pulled to the right at...Ch. 29 - A 0.360-m-long metal bar is pulled to the left by...Ch. 29 - Prob. 29.32ECh. 29 - A 0.250-m-long bar moves on parallel rails that...Ch. 29 - Prob. 29.34ECh. 29 - Prob. 29.35ECh. 29 - A metal ring 4.50 cm in diameter is placed between...Ch. 29 - Prob. 29.37ECh. 29 - Prob. 29.38ECh. 29 - A long, thin solenoid has 400 turns per meter and...Ch. 29 - Prob. 29.40ECh. 29 - A long, straight solenoid with a cross-sectional...Ch. 29 - Prob. 29.42ECh. 29 - Prob. 29.43ECh. 29 - CALC In Fig. 29.23 the capacitor plates have area...Ch. 29 - Prob. 29.45ECh. 29 - A very long, rectangular loop of wire can slide...Ch. 29 - CP CALC In the circuit shown in Fig. P29.47, the...Ch. 29 - Prob. 29.48PCh. 29 - CALC A very long, straight solenoid with a...Ch. 29 - Prob. 29.50PCh. 29 - In Fig. P29.51 the loop is being pulled lo the...Ch. 29 - Make a Generator? You are shipwrecked on a...Ch. 29 - A flexible circular loop 6.50 cm in diameter lies...Ch. 29 - CALC A conducting rod with length L = 0.200 m,...Ch. 29 - Prob. 29.55PCh. 29 - CP CALC Terminal Speed. A bar of length L = 0.36 m...Ch. 29 - CALC The long, straight wire shown in Fig. P29.57a...Ch. 29 - CALC A circular conducting ring with radius r0 =...Ch. 29 - CALC A slender rod, 0.240 m long, rotates with an...Ch. 29 - A 25.0-cm-long metal rod lies in the .xy-plane and...Ch. 29 - CP CALC A rectangular loop with width L and a...Ch. 29 - CALC An airplane propeller of total length L...Ch. 29 - The magnetic field B, at all points within a...Ch. 29 - CP CALC A capacitor has two parallel plates with...Ch. 29 - Prob. 29.65PCh. 29 - Prob. 29.66PCh. 29 - DATA You are conducting an experiment in which a...Ch. 29 - DATA You measure the magnitude of the external...Ch. 29 - A metal bar with length L, mass m, and resistance...Ch. 29 - CP CALC A square, conducting, wire loop of side L,...Ch. 29 - BIO STIMULATING THE BRAIN. Communication in the...Ch. 29 - BIO STIMULATING THE BRAIN. Communication in the...Ch. 29 - It may be desirable to increase the maximum...Ch. 29 - Which graph in Fig. P29.74 best represents the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A thin wire = 30.0 cm long is held parallel to and d = 80.0 cm above a long, thin wire carrying I = 200 A and fixed in position (Fig. P30.47). The 30.0-cm wire is released at the instant t = 0 and falls, remaining parallel to the current-carrying wire as it falls. Assume the falling wire accelerates at 9.80 m/s2. (a) Derive an equation for the emf induced in it as a function of time. (b) What is the minimum value of the emf? (c) What is the maximum value? (d) What is the induced emf 0.300 s after the wire is released? Figure P30.47arrow_forwardA rectangular conducting loop is placed near a long wire carrying a current I as shown in Figure OQ23.5. If I decreases in time, what can be said of the current induced in the loop? (a) The direction of the current depends on the size of the loop. (b) The current is clockwise. (c) The current is counterclockwise. (d) The current is zero. (e) Nothing can be said about the current in the loop without more information.arrow_forwardDesign a current loop that, when rotated in a uniform magnetic field of strength 0.10 T, will produce an emf =0 sin t. where 0=110V and 0=110V .arrow_forward
- A circular loop of wire with a radius of 4.0 cm is in a uniform magnetic field of magnitude 0.060 T. The plane of the loop is perpendicular to the direction of the magnetic field. In a time interval of 0.50 s, the magnetic field changes to the opposite direction with a magnitude of 0.040 T. What is the magnitude of the average emf induced in the loop? (a) 0.20 V (b) 0.025 V (c) 5.0 mV (d) 1.0 mV (e) 0.20 mVarrow_forwardA flat, square coil of 20 turns that has sides of length 15.0 cm is rotating in a magnetic field of strength 0.050 T. If tlie maximum emf produced in die coil is 30.0 mV, what is the angular velocity of the coil?arrow_forwardFigure P23.58 is a graph of the induced emf versus time for a coil of N turns rotating with angular speed ω in a uniform magnetic field directed perpendicular to the coil’s axis of rotation. What If? Copy this sketch (on a larger scale) and on the same set of axes show the graph of emf versus t (a) if the number of turns in the coil is doubled, (b) if instead the angular speed is doubled, and (c) if the angular speed is doubled while the number of turns in the coil is halved. Figure P23.58arrow_forward
- A coil with a self-inductance of 3.0 H and a resistance of 100 2 carries a steady current of 2.0 A. (a) What is the energy stored in the magnetic field of the coil? (b) What is the energy per second dissipated in the resistance of the coil?arrow_forwardReview. Figure P31.31 shows a bar of mass m = 0.200 kg that can slide without friction on a pair of rails separated by a distance = 1.20 m and located on an inclined plane that makes an angle = 25.0 with respect to the ground. The resistance of the resistor is R = 1.00 and a uniform magnetic field of magnitude B = 0.500 T is directed downward, perpendicular to the ground, over the entire region through which the bar moves. With what constant speed v does the bar slide along the rails?arrow_forwardAn N - turn circular wire coil of radius r lies in thexy - plane (the plane of the page), as in Figure P20.10. A uniformmagnetic field is turned on, increasing steadily from 0to B0 in the positive z - direction in t seconds. (a) Find a symbolicexpression for the emf, ε, induced in the coil in termsof the variables given. (b) Looking down on at the xy -planefrom the positive z - axis, is the direction of the induced currentclockwise or counterclockwise? (c) If each loop hasresistance R, find an expression for the magnitude of theinduced current, I.arrow_forward
- Below is a Motional EMF problem with a sliding, conducting bar connecting a wire loop within a magnetic field of magnitude B = 0.640 T (and the direction shown below). This bar is being pulled to the right (as shown below) at a constant velocity v= 25.00 m/s. There is a resistance in the wire connecting the bar ends of R = 6.25 Ohms. There is no power source beyond the force pulling on the bar. The height listed shows the space between the wires as a value of H = 0.300 m. Magnetic Field (out of the page) Force What is the induced current within the closed loop in this system? You can assume the only resistance comes from the listed resistor. Make sure to put a negative with your answer for clockwise current. Heightarrow_forwardA current runs in a long solenoid of a radius 3 cm and 437 turns per meter. The current in the solenoid is increased at a rate of 2 A/s. A single circular loop of wire of radius 5 cm and resistance 2 Ω surrounds the solenoid. Find the electrical current induced in the single loop. Give your answer in units of microamperes.arrow_forwardA circular loop with a radius of 0.21 m is rotated by 90.0° over 0.210 s in a uniform magnetic field with B = 1.40 T. The plane of the loop is initially perpendicular to the field and is parallel to the field after the rotation. (a) What is the average induced emf in the loop? V(b) If the rotation is then reversed, what is the average induced emf in the loop? Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning