Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 53P
To determine
The proof that inductance of toroid is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A rectangular loop of N closely packed turns is positionednear a long straight wire .What is the mutual inductanceMforthe loop–wire combinationif N= 100, a= 1.0 cm, b =8.0 cm, and l =30 cm?
A solenoid of length 6.9✕10-2 m and cross-sectional area of 6.8✕10-5 m2 contains 6350 turns per meter length. Calculate the self-inductance of the solenoid. (Given: µo=4?✕10-7 Tm A-1)
Starting with emf2 = -M ΔI1/ Δt , show that the units of inductance are (V . s)/A = Ω.s .
Chapter 28 Solutions
Physics for Scientists and Engineers
Ch. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10P
Ch. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 64PCh. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74PCh. 28 - Prob. 75PCh. 28 - Prob. 76PCh. 28 - Prob. 77PCh. 28 - Prob. 78PCh. 28 - Prob. 79PCh. 28 - Prob. 80PCh. 28 - Prob. 81PCh. 28 - Prob. 83P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose that a cylindrical solenoid is wrapped around a core of iron whose magnetic susceptibility is x. Using Equation 14.9, show that the self-inductance of the solenoid is given by L=(l+x)+0n2Al where l is its length, A its cross-sectional area and N its total number of turns. Nm=Uarrow_forwardThe current I(t) through a 5.0-mH inductor varies with time, as shown below. The resistance of the inductor is 5.0 . Calculate the voltage across the inductor at t = 2.0 ms, r = 4.0 ms, and t = 8.0 ms.arrow_forwardWhat is the self-inductance per meter of a coaxial cable whose inner radius is 0.50 mm and whose outer radius is 4.00 mm?arrow_forward
- In an oscillating LC circuit the maximum charge on the capacitor is 2.0 × 10-6 C and the maximum current through the inductor is 8.0 mA. (a) What is the period of the oscillations? (b) How much time elapses between an instant when the capacitor is uncharged and the next instant when it is fully charged?arrow_forwardA 5000-pF capacitor is charged to 100 V and then quickly connected to an 80-mH inductor. Determine (a) the maximum energy stored in the magnetic field of the inductor, (b) the peak value of the current, and (c) the frequency of oscillation of the circuit.arrow_forwardA long, cylindrical solenoid with 100 turns per centimeter has a radius of 1.5 cm. (a) Neglecting end effects, that is the self-inductance per unit length of the solenoid? (b) If the current through the solenoid changes at the rate 5.0 AJs, what is the emf induced per unit length?arrow_forward
- Suppose that a rectangular toroid has 2000 windings and a self-inductance of 0.040 H. If h = 0.10 m, what is the current flowing through a rectangular toroid when the energy in its magnetic field is 2.0 × 10-6 J?arrow_forwardThe self-inductance of a coil is zero if there is no current passing through the windings. True or false?arrow_forwardAn inductor has a current I(t) = (0.480 A) cos[(260 s-1)t] flowing through it. If the maximum emf %3D across the inductor is equal to 0.530 V, what is the self-inductance of the inductor, in mH? A 110-V hair dryer is rated at 1200 W. What current will it draw when operating from a 110-V electrical outlet? A small glass bead has been charged to 4.5 nC. What is the magnitude of the electric field 2.0 cm from the center of the bead? (k = 1/4nE 0 = 8.99 x 10° N. m2/C2) %3Darrow_forward
- In the circuit in the figure Ry R emf of the battery&= 25 V. Wn All the inductors are of the R same inductance, L=0.064 H and of negligible resistances. Resistances of the resistors %3D are Ro = 62, Ry = 1, R2 = 81, Rg = 8N, R, = 152, Rg = 992, %3D %3D %3D Re = 82. The switch S is closed at the time t=D0. %3D Find the current flowing in Ro immediately after the switch S is closed. RUarrow_forwardSuppose that a rectangular toroid has 2000 windingsand a self-inductance of 0.040 H. If h = 0.10 m , what isthe ratio of its outer radius to its inner radius?arrow_forwardThe figure below shows a toroidal coil with N- 39.000 turns, each of radius r-0.019 m. An infinite wire runs down the center of the toroid with a radial distance R -0.195 m from the center of each of the turns. Assuming that Ris much greater than r, find the mutual inductance of the wire and the toroid. i H.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning