General Physics, 2nd Edition
2nd Edition
ISBN: 9780471522782
Author: Morton M. Sternheim
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 4E
To determine
The energy difference between the spin up and spin down states of an electron in a magnetic field pf magnitude
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hydrogen atoms in interstellar gas clouds emit electromagnetic radiation at a wavelength of 21.0 cm when an electron in the ground state of hydrogen switches spin states.
Determine the magnitude of the energy difference delta(E) between the two spin states in this transition.
delta(E) = ? J
The magnetic moment u has 3 directions of
orientation in the magnetic field (B).
unidirectional, counterclockwise and
perpendicular. The interaction energy
between the field and the magnetic moment
is E = -µB one state.
a. Partition function of one particle?
b. What is the function of the system
partition of N differentiated particles?
C. The average energy of the system?
An electron is in an angular momentum state with 1 = 3. What is the length of the electron's angular momentum
vector?
Chapter 28 Solutions
General Physics, 2nd Edition
Ch. 28 - Prob. 1RQCh. 28 - Prob. 2RQCh. 28 - Prob. 3RQCh. 28 - Prob. 4RQCh. 28 - Prob. 5RQCh. 28 - Prob. 6RQCh. 28 - Prob. 7RQCh. 28 - Prob. 8RQCh. 28 - Prob. 9RQCh. 28 - Prob. 10RQ
Ch. 28 - Prob. 1ECh. 28 - Prob. 2ECh. 28 - Prob. 3ECh. 28 - Prob. 4ECh. 28 - Prob. 5ECh. 28 - Prob. 6ECh. 28 - Prob. 7ECh. 28 - Prob. 8ECh. 28 - Prob. 9ECh. 28 - Prob. 10ECh. 28 - Prob. 11ECh. 28 - Prob. 12ECh. 28 - Prob. 13ECh. 28 - Prob. 14ECh. 28 - Prob. 15ECh. 28 - Prob. 16ECh. 28 - Prob. 17ECh. 28 - Prob. 18ECh. 28 - Prob. 19ECh. 28 - Prob. 20ECh. 28 - Prob. 21ECh. 28 - Prob. 22ECh. 28 - Prob. 23ECh. 28 - Prob. 24ECh. 28 - Prob. 25ECh. 28 - Prob. 26ECh. 28 - Prob. 27ECh. 28 - Prob. 28ECh. 28 - Prob. 29ECh. 28 - Prob. 30ECh. 28 - Prob. 31ECh. 28 - Prob. 32ECh. 28 - Prob. 33ECh. 28 - Prob. 34ECh. 28 - Prob. 35ECh. 28 - Prob. 36ECh. 28 - Prob. 37ECh. 28 - Prob. 38ECh. 28 - Prob. 39ECh. 28 - Prob. 40ECh. 28 - Prob. 41ECh. 28 - Prob. 42ECh. 28 - Prob. 43ECh. 28 - Prob. 44ECh. 28 - Prob. 45ECh. 28 - Prob. 46ECh. 28 - Prob. 47ECh. 28 - Prob. 48ECh. 28 - Prob. 49ECh. 28 - Prob. 50ECh. 28 - Prob. 51ECh. 28 - Prob. 52ECh. 28 - Prob. 53ECh. 28 - Prob. 54E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A population inversion for two energy levels is often described by assigning a negative Kelvin temperature to the system. What negative temperature would describe a system in which the population of the upper energy level exceeds that of the lower level by 10% and the energy difference between the two levels is 2.26 eV?arrow_forwarda. The electron of a hydrogen atom is excited into a higher energy level from a lower energy level. A short time later the electron relaxes down to the no = 1 energy level, releasing a photon with a wavelength of 93.83 nm. Compute the quantum number of the energy level the electron relaxes from, nhi. Note: the Rydberg constant in units of wavenumbers is 109,625 cm-1 nhi =16 b. What would the wavenumber, wavelength and energy of the photon be if instead no = 1 and nhi = 4? V: 6.9121e14 x (cm-¹) λ: (nm) E: 45.8e-20 ✓ (1)arrow_forwardChapter 39, Problem 044 A hydrogen atom in a state having a binding energy (the energy required to remove an electron) of -1.51 eV makes a transition to a state with an excitation energy (the difference between the energy of the state and that of the ground state) of 10.200 eV. (a) What is the energy of the photon emitted as a result of the transition? What are the (b) higher quantum number and (c) lower quantum number of the transition producing this emission? Use -13.60 eV as the binding energy of an electron in the ground state. (a) Number Units (b) Number Units (c) Number Unitsarrow_forward
- Student A & B are studying the Zeeman effect. They observe that the energy of an electron in the p-level of an atom is changed in the presence of a magnetic field of magnitude 4.6 T. What is the difference between the largest and smallest possible energies? (bohr magneton = μB = 9.27x10-24 J/T).arrow_forwardA neutral sodium atom has an ionization potential of 5.1 eV. What is the speed of a free electron that has just barely enough kinetic energy to collisionally ionize a sodium atom in its ground state? What is the speed of a free proton with just enough kinetic energy to collisionally ionize this atom?arrow_forwardThe lifetime of the 4P1/2 state of potassium is 27.3 ns.What are the Einstein A and B coefficients for the transition? What is the transition dipole moment in debye?arrow_forward
- We want to look at the angular momentum structure of one electronic level of an atom. a. The atom has orbital angular momentum L, electron spin angular momentum S and nuclear angular momentum I. For very large magnetic fields B, what are the quantum numbers and energies? b. In addition to the static B field along the z axis, we add a transverse oscillating magnetic field. Which states are now coupled by the oscillating field, i.e. between which states are transitions induced?arrow_forwardIn another universe, the electron is a spin@3/2 rather than a spin@1/2 particle, but all other physics are the same as in our universe. In this universe what is the ground-state electron configuration of sodium?arrow_forwardQ12arrow_forward
- An electron is in a three-dimensional box with side lengths LX = 0.600 nm and LY = LZ = 2LX. What are the quantum numbers nX, nY, and nZ and the energies, in eV, for the four lowest energy levels? What is the degeneracy of each (including the degeneracy due to spin)?arrow_forwardHydrogen gas can be placed inside a strong magnetic field B=12T. The energy of 1s electron in hydrogen atom is 13.6 eV ( 1eV= 1.6*10 J ). a) What is a wavelength of radiation corresponding to a transition between 2p and 1s levels when magnetic field is zero? b) What is a magnetic moment of the atom with its electron initially in s state and in p state? c) What is the wavelength change for the transition from p- to s- if magnetic field is turned on?arrow_forwardB6arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill