FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
11th Edition
ISBN: 9781119459132
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 23P
What uniform magnetic field, applied perpendicular to a beam of electrons moving at 1.30 × 106 m/s, is required to make the electrons travel in a circular arc of radius 0.350 m?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A proton moves through a magnetic field 2.0 T at a speed of 5.00 x 106 m/s perpendicular
to the field. Find the (a) centripetal acceleration and (b) radius of the circular path of the
proton.
A charged particle enters a region with uniform magnetic field and leaves in a perpendicular with
respect to initial direction. Find the sign and the speed of the charged particle is B=3,22 T,
m=7,17x10 21 kg, q=8e and the distance travelled in the magnetic field is I=4,11 cm, where e is
charge of one electron.
IX X x
X XI
B
ix x X x
a. positive, 1504,12 cm/s
b. negative, 1128,09 cm/s
c. positive, 752,06 cm/s
d. negative, 1504,12 cm/s
e. positive, 1128,09 cm/s
A magnetic field can force a charged particle to move in a circular path. Suppose that an electron moving in a circle experiences a radial acceleration of magnitude 3.0 × 1014 m/s2 in a particular magnetic field. (a) What is the speed of the electron if the radius of its circular path is 0.14 m? (b) What is the period of the motion?
Chapter 28 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Ch. 28 - Prob. 1QCh. 28 - Prob. 2QCh. 28 - Prob. 3QCh. 28 - Prob. 4QCh. 28 - In Module 28-2, we discussed a charged particle...Ch. 28 - Prob. 6QCh. 28 - Figure 28-27 shows the path of an electron that...Ch. 28 - Figure 28-28 shows the path of an electron in a...Ch. 28 - Prob. 9QCh. 28 - Particle round about. Figure 28-29 shows 11 paths...
Ch. 28 - Prob. 11QCh. 28 - Prob. 12QCh. 28 - Prob. 1PCh. 28 - A particle of mass 10 g and charge 80 C moves...Ch. 28 - An electron that has an instantaneous velocity of...Ch. 28 - An alpa particle travels at a velocity of...Ch. 28 - GO An electron moves through a unifrom magnetic...Ch. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - An electric field of 1.50 kV/m and a perpendicular...Ch. 28 - ILW In Fig. 28-32, an electron accelerated from...Ch. 28 - A proton travels through uniform magnetic and...Ch. 28 - Prob. 11PCh. 28 - Go At time t1 an electron is sent along the...Ch. 28 - Prob. 13PCh. 28 - A metal strip 6.50 cm long, 0.850 cm wide, and...Ch. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - An alpha particle can be produced in certain...Ch. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - SSM An electron of kinetic energy 1.20 keV circles...Ch. 28 - In a nuclear experiment a proton with kinetic...Ch. 28 - What uniform magnetic field, applied perpendicular...Ch. 28 - An electron is accelerated from rest by a...Ch. 28 - a Find the frequency of revolution of an electron...Ch. 28 - Prob. 26PCh. 28 - A mass spectrometer Fig. 28-12 is used to separate...Ch. 28 - A particle undergoes uniform circular motion of...Ch. 28 - An electron follows a helical path in a uniform...Ch. 28 - GO In Fig. 28-40. an electron with an initial...Ch. 28 - A particular type of fundamental particle decays...Ch. 28 - An source injects an electron of speed v = 1.5 ...Ch. 28 - Prob. 33PCh. 28 - An electron follows a helical path in a uniform...Ch. 28 - A proton circulates in a cyclotron, beginning...Ch. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - In a certain cyclotron a proton moves in a circle...Ch. 28 - SSM A horizontal power line carries a current of...Ch. 28 - A wire 1.80 m long carries a current of 13.0 A and...Ch. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - A single-turn current loop, carrying a current of...Ch. 28 - Prob. 44PCh. 28 - ACA /ACwire 50.0 cm long carries a 0.500 A current...Ch. 28 - In Fig. 28-44, a metal wire of mass m = 24.1 mg...Ch. 28 - GO A 1.0 kg copper rod rests on two horizontal...Ch. 28 - GO A long, rigid conductor, lying along an x axis,...Ch. 28 - Prob. 49PCh. 28 - An electron moves in a circle of radius r = 5.29 ...Ch. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - A magnetic dipole with a dipole moment of...Ch. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - A Current loop, carrying a current of 5.0 A, is in...Ch. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - A circular loop of wire having a radius of 8.0 cm...Ch. 28 - GO Figure 28-52 gives the orientation energy U of...Ch. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - A stationary circular wall clock has a face with a...Ch. 28 - A wire lying along a y axis from y = 0 to y =...Ch. 28 - Atom 1 of mass 35 u and atom 2 of mass 37 u are...Ch. 28 - Prob. 70PCh. 28 - Physicist S. A. Goudsmit devised a method for...Ch. 28 - A beam of electrons whose kinetic energy is K...Ch. 28 - Prob. 73PCh. 28 - Prob. 74PCh. 28 - Prob. 75PCh. 28 - Prob. 76PCh. 28 - Prob. 77PCh. 28 - In Fig. 28-8, show that the ratio of the Hall...Ch. 28 - Prob. 79PCh. 28 - An electron is moving at 7.20 106 m/s in a...Ch. 28 - Prob. 81PCh. 28 - Prob. 82PCh. 28 - Prob. 83PCh. 28 - A write lying along an x axis from x = 0 to x =...Ch. 28 - Prob. 85PCh. 28 - Prob. 86PCh. 28 - Prob. 87PCh. 28 - Prob. 88PCh. 28 - In Fig. 28-58, an electron of mass m, charge e,...Ch. 28 - Prob. 90PCh. 28 - Prob. 91PCh. 28 - An electron that is moving through a uniform...
Additional Science Textbook Solutions
Find more solutions based on key concepts
An exhaust fan in a building should be able to move 6Ibm/s of air at 14.4psia,68F through a 1.4-ft-diameter ven...
Fundamentals Of Thermodynamics
15. If a 1-L container is immersed halfway in water, what is the volume of water displaced? What is the buoyant...
Conceptual Physical Science (6th Edition)
(a) Let and . Calculate the divergence and curl of F1 and F2. Which one can be written as the gradient of a sc...
Introduction to Electrodynamics
Compare the free-body diagram for the lower book to the free-body diagram for the same book in part A (i.e., be...
Tutorials in Introductory Physics
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
1. A 5.0-m-diameter merry-go-round is turning with a 4.0 s period. What is the speed of a child on the rim?
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What magnetic field is required in order to confine a proton moving with a speed of 4.0 × 106 m/s to a circular orbit of radius 10 cm?arrow_forwardA particle moving downward at a speed of 6.0106 m/s enters a uniform magnetic field that is horizontal and directed from east to west. (a) If the particle is deflected initially to the north in a circular arc, is its charge positive or negative? (b) If B = 0.25 T and the charge-to-mass ratio (q/m) of the particle is 40107 C/kg. what is ±e radius at the path? (c) What is the speed of the particle after c has moved in the field for 1.0105s ? for 2.0s?arrow_forwardA long, solid, cylindrical conductor of radius 3.0 cm carries a current of 50 A distributed uniformly over its cross-section. Plot the magnetic field as a function of the radial distance r from the center of the conductor.arrow_forward
- A spacecraft is in 4 circular orbit of radius equal to 3.0 104 km around a 2.0 1030 kg pulsar. The magnetic field of the pulsar at that radial distance is 1.0 102 T directed perpendicular to the velocity of the spacecraft. The spacecraft is 0.20 km long with a radius of 0.040 km and moves counter-clockwise in the xy-plane around the pulsar. (a) What is the speed of the spacecraft? (b) If the magnetic field points in the positive z-direction, is the emf induced from the back to the front of the spacecraft or from side to side? (c) Compute the induced emf. (d) Describe the hazards for astronauts inside any spacecraft moving in the vicinity of a pulsar.arrow_forwardIn Niels Bohr’s 1913 model of the hydrogen atom, the single electron is in a circular orbit of radius 5.29 × 10−11 m and its speed is 2.19 × 106 m/s. (a) What is the magnitude of the magnetic moment due to the electron’s motion? (b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of this magnetic moment vector?arrow_forwardA proton travels with a speed of 3.00 106 m/s at an angle of 37.0 with the direction of a magnetic field of 0.300 T in the +y direction. What are (a) the magnitude of the magnetic force on the proton and (b) its acceleration?arrow_forward
- An ion with a charge to mass ratio of 1.10×104 C/kg travels perpendicular to magnetic field (B=9.0×10-1 T) in a circular path (r=0.240 m) How long does it take the ion to complete one revolution?arrow_forwardA proton moves in a helical path at speed v = 5.10 x 107 m/s high above the atmosphere, where Earth's magnetic field has magnitude B = 3.80 x 10-6 T. The proton's velocity makes an angle of 25.0° with the magnetic field. The mass of the proton is 1.673x10-27 kg. Find the radius of the helix. kmarrow_forwardA negative charge, q = -7.2 nC follows a circular path due to the force caused by the magnetic field. If the magnetic field, B = 4.1 T causes charge to follow a radius of r = 3.2 µm, how fast (v = ?), in m/s, does the charge move? The mass of the charge is 5.56 x 10^-22 kg. Disregard any effects caused by special relativity.arrow_forward
- A proton moves through a magnetic field of magnitude 2 T at a speed of 5 x 106 m/s perpendicular to the field. Find the (a) centripetal acceleration. 5.15 x 1014 m/s2 7.82 x 1014 m/s2 4.31 x 1014 m/s2 9.58 x 1014 m/s2arrow_forwardA charge of 9.5 µC is in a magnetic field. A force of magnitude 7.5 ×10-3 N acts on the charge when is traveling at a speed of 6.6 ×107 ms-1 at an angle 30° with respect to the field direction. What is the magnitude of the magnetic field?arrow_forwardA particle with mass 3×10−2 kgkg and charge +7 μCμC enters a region of space where there is a magnetic field of 1 TT that is perpendicular to the velocity of the particle. When the particle encounters the magnetic field, it experiences an acceleration of 17 m/s2m/s2 . What is the speed of the particle when it enters the magnetic-field region? Express your answer in meters per second.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY