Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 20E
Using the information from Example 28.1, if galaxies are distributed homogeneously, how many times more of them would you expect to count on your second survey?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please answer within 90 minutes.
If a galaxy is 100,000,000 parces away and has absolute magnitude of -20.0 what is the galaxies apparent magnitude? (M=m+5-5 log d)
why do you have to know the distance to a galaxy to find its mass?
Chapter 28 Solutions
Astronomy
Ch. 28 - How are distant (young) galaxies different from...Ch. 28 - What is the evidence that star formation began...Ch. 28 - Describe the evolution of an elliptical galaxy....Ch. 28 - Explain what we mean when we call the universe...Ch. 28 - Describe the organization of galaxies into...Ch. 28 - What is the evidence that a large fraction of the...Ch. 28 - When astronomers make maps of the structure of the...Ch. 28 - How does the presence of an active galactic...Ch. 28 - Describe how you might use the color of a galaxy...Ch. 28 - Suppose a galaxy formed stars for a few million...
Ch. 28 - Given the ideas presented here about how galaxies...Ch. 28 - Can an elliptical galaxy evolve into a spiral?...Ch. 28 - If we see a double image of a quasar produced by a...Ch. 28 - The left panel of Figure 27.1 shows a cluster of...Ch. 28 - Suppose you are standing in the center of a large,...Ch. 28 - Astronomers have been making maps by observing a...Ch. 28 - Human civilization is about 10,000 years old as...Ch. 28 - Given that only about 5% of the galaxies visible...Ch. 28 - Using the information from Example 28.1, how much...Ch. 28 - Using the information from Example 28.1, if...Ch. 28 - Using the information from Example 28.1, how much...Ch. 28 - Galaxies are found in the “walls” of huge voids;...Ch. 28 - Calculate the velocity, the distance, and the...Ch. 28 - Assume that dark matter is uniformly distributed...Ch. 28 - The simulated box of galaxy filaments and...Ch. 28 - The first objects to collapse gravitationally...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
A KNO3 solution containing 45 g of KNO3 per 100 g of water is cooled from 40Cto0C. What happens during cooling?...
Introductory Chemistry (6th Edition)
A source of electromagnetic radiation produces infrared light. Which of the following could be the wavelength ...
Chemistry: The Central Science (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Given the ideas presented here about how galaxies form, would you expect to find a giant elliptical galaxy in the Local Group? Why or why not? Is there in fact a giant elliptical in the Local Group?arrow_forwardBased on your analysis of galaxies in Table 26.1, is there a correlation between the population of stars and the quantity of gas or dust? Explain why this might be.arrow_forwardUsing the information from Example 28.1, how much fainter an object will you have to be able to measure in order to include the same kinds of galaxies in your second survey? Remember that the brightness of an object varies as the inverse square of the distance.arrow_forward
- Each point on the above diagram shows the line-of-sight recession velocity versus distance for a number of distant galaxies. Describe how the recession velocities of galaxies are measured by astronomers. Explain the different techniques used by astronomers to measure the distances to galaxies, and describe how these methods are used to construct the distance ladder.arrow_forwardIn the reading, you were told that there were roughly 10,000 galaxies in the image of the Hubble Ultra Deep Field alone. The image is roughly 10 square arcminutes and there are roughly 1.5*10^8 square arcminutes composing the entire sky. With that in mind and assuming that the Hubble Ultra Deep Field represents an average part of the sky, roughly how many galaxies may exist in the observable universe? (Please include commas for every factor of 1,000; for example 2,343,567,890)arrow_forwardHow astronomers determine the distance of a galaxy? Explain.arrow_forward
- = 2. Using a Hubble constant of Ho 70 km/s/Mpc, find the distance to the galaxy cluster that moves with a velocity of 6500 km/s. Give your answer in megaparsecs and light-years.arrow_forwardThe time for a galaxy to cross from one side of a cluster to the other is called the crossing time. Find the crossing time for a galaxy moving at speed v to cross a cluster with a diameter d. Express you answer in gigayears, using one decimal place. Values: v = 849 km/s d = 1.3 Mpcarrow_forwardIf the active core of a galaxy contains a black hole of 106 M, what will the orbital period be for matter orbiting the black hole at a distance of 0.23 AU? Hint: Use the formula for circular velocity, V. GM V hrarrow_forward
- Assume that we have measured the distance to a close by galaxy, with apparent magnitude m1 = 6, to be d1 = 1Mpc. We now assume that all galaxies are similar and have therefore the same intrinsic or absolute, luminosity. Then measuring the apparent magnitude of a second galaxy to be m2 = 11, estimate the distance to that galaxy. Please answer within 90 minutes.arrow_forwardThe Kormendy relation for ellipticals can be written as He = 20.2+ 3.0 log R. where R. is the half-light radius (in kpc) and 4e is the surface brightness (in magnitudes per square arc second) at R.. An elliptical galaxy obeying this relation will have a total luminosity Lo R for some index 7. What is the correct value of n? O a. n=-6/5 O b. n= 4/5 T23D Oc n= 16/5 O d. n cannot be determined with the information we have.arrow_forwardSuppose you want to observe every galaxy within some distance. Your enterprising assistant says that instead you can observe every galaxy within double the original distance. What is the ratio of the number of galaxies you can now observe as opposed to before?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning