EBK THERMODYNAMICS: AN ENGINEERING APPR
9th Edition
ISBN: 8220106796979
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.8, Problem 138FEP
Heat is transferred steadily through a 0.2-m-thick, 8 m × 4 m wall at a rate of 2.4 kW. The inner and outer surface temperatures of the wall are measured to be 15°C and 5°C. The average thermal conductivity of the wall is
- (a) 0.002 W/m·°C
- (b) 0.75 W/m·°C
- (c) 1.0 W/m·°C
- (d) 1.5 W/m·°C
- (e) 3.0 W/m·°C
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Heat is transferred steadily through a 0.2-m-thick, 8 m × 4 m wall at a rate of 2.4 kW. The inner and outer surface temperatures of the wall are measured to be 15°C and 5°C. The average thermal conductivity of the wall is
(a) 0.002 W/m·°C (b) 0.75 W/m·°C (c) 1.0 W/m·°C
(d) 1.5 W/m·°C (e) 3.0 W/m·°C
The inner and outer surfaces of a 0.5-cm-thick 2-m by 2-m window glass in winter are 10°C and 3°C, respectively. If the thermal conductivity of the glass is 0.78 W/m · °C, determine the rate of heat loss, in Watt, through the glass. What would your answer be if the glass were 1cm thick?
The roof of an electrically heated house is 7 m long, 10 m wide, and 0.25 m thick. It is made of a flat layer of concrete whose thermal conductivity is 0.92 W/m·°C. During a certain winter night, the temperatures of the inner and outer surfaces of the roof were measured to be 15°C and 4°C, respectively. The average rate of heat loss through the roof that night was
(a) 41 W (b) 177 W (c) 4894 W (d) 5567 W (e) 2834 W
Chapter 2 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 2.8 - What is the difference between the macroscopic and...Ch. 2.8 - What is total energy? Identify the different forms...Ch. 2.8 - List the forms of energy that contribute to the...Ch. 2.8 - How are heat, internal energy, and thermal energy...Ch. 2.8 - What is mechanical energy? How does it differ from...Ch. 2.8 - Portable electric heaters are commonly used to...Ch. 2.8 - Natural gas, which is mostly methane CH4, is a...Ch. 2.8 - Consider the falling of a rock off a cliff into...Ch. 2.8 - Electric power is to be generated by installing a...Ch. 2.8 - The specific kinetic energy of a moving mass is...
Ch. 2.8 - Determine the specific kinetic energy of a mass...Ch. 2.8 - Calculate the total potential energy, in Btu, of...Ch. 2.8 - Determine the specific potential energy, in kJ/kg,...Ch. 2.8 - An object whose mass is 100 kg is located 20 m...Ch. 2.8 - A water jet that leaves a nozzle at 60 m/s at a...Ch. 2.8 - Consider a river flowing toward a lake at an...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - What is the caloric theory? When and why was it...Ch. 2.8 - In what forms can energy cross the boundaries of a...Ch. 2.8 - What is an adiabatic process? What is an adiabatic...Ch. 2.8 - When is the energy crossing the boundaries of a...Ch. 2.8 - Consider an automobile traveling at a constant...Ch. 2.8 - A room is heated by an iron that is left plugged...Ch. 2.8 - A room is heated as a result of solar radiation...Ch. 2.8 - A gas in a pistoncylinder device is compressed,...Ch. 2.8 - A small electrical motor produces 5 W of...Ch. 2.8 - A car is accelerated from rest to 85 km/h in 10 s....Ch. 2.8 - A construction crane lifts a prestressed concrete...Ch. 2.8 - Determine the torque applied to the shaft of a car...Ch. 2.8 - A spring whose spring constant is 200 lbf/in has...Ch. 2.8 - How much work, in kJ, can a spring whose spring...Ch. 2.8 - A ski lift has a one-way length of 1 km and a...Ch. 2.8 - The engine of a 1500-kg automobile has a power...Ch. 2.8 - A damaged 1200-kg car is being towed by a truck....Ch. 2.8 - As a spherical ammonia vapor bubble rises in...Ch. 2.8 - A steel rod of 0.5 cm diameter and 10 m length is...Ch. 2.8 - What are the different mechanisms for transferring...Ch. 2.8 - For a cycle, is the net work necessarily zero? For...Ch. 2.8 - On a hot summer day, a student turns his fan on...Ch. 2.8 - Water is being heated in a closed pan on top of a...Ch. 2.8 - An adiabatic closed system is accelerated from 0...Ch. 2.8 - A fan is to accelerate quiescent air to a velocity...Ch. 2.8 - A vertical pistoncylinder device contains water...Ch. 2.8 - At winter design conditions, a house is projected...Ch. 2.8 - A water pump increases the water pressure from 15...Ch. 2.8 - The lighting needs of a storage room are being met...Ch. 2.8 - A university campus has 200 classrooms and 400...Ch. 2.8 - Consider a room that is initially at the outdoor...Ch. 2.8 - An escalator in a shopping center is designed to...Ch. 2.8 - Consider a 2100-kg car cruising at constant speed...Ch. 2.8 - Prob. 51PCh. 2.8 - What is mechanical efficiency? What does a...Ch. 2.8 - How is the combined pumpmotor efficiency of a pump...Ch. 2.8 - Can the combined turbinegenerator efficiency be...Ch. 2.8 - Consider a 2.4-kW hooded electric open burner in...Ch. 2.8 - The steam requirements of a manufacturing facility...Ch. 2.8 - Reconsider Prob. 256E. Using appropriate software,...Ch. 2.8 - A 75-hp (shaft output) motor that has an...Ch. 2.8 - Prob. 59PCh. 2.8 - An exercise room has six weight-lifting machines...Ch. 2.8 - A room is cooled by circulating chilled water...Ch. 2.8 - The water in a large lake is to be used to...Ch. 2.8 - A 7-hp (shaft) pump is used to raise water to an...Ch. 2.8 - A geothermal pump is used to pump brine whose...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - Reconsider Prob. 265. Using appropriate software,...Ch. 2.8 - Water is pumped from a lower reservoir to a higher...Ch. 2.8 - An 80-percent-efficient pump with a power input of...Ch. 2.8 - Water is pumped from a lake to a storage tank 15 m...Ch. 2.8 - Large wind turbines with a power capacity of 8 MW...Ch. 2.8 - A hydraulic turbine has 85 m of elevation...Ch. 2.8 - The water behind Hoover Dam in Nevada is 206 m...Ch. 2.8 - An oil pump is drawing 44 kW of electric power...Ch. 2.8 - A wind turbine is rotating at 15 rpm under steady...Ch. 2.8 - How does energy conversion affect the environment?...Ch. 2.8 - What is acid rain? Why is it called a rain? How do...Ch. 2.8 - Why is carbon monoxide a dangerous air pollutant?...Ch. 2.8 - What is the greenhouse effect? How does the excess...Ch. 2.8 - What is smog? What does it consist of? How does...Ch. 2.8 - Consider a household that uses 14,000 kWh of...Ch. 2.8 - When a hydrocarbon fuel is burned, almost all of...Ch. 2.8 - Prob. 82PCh. 2.8 - A typical car driven 20,000 km a year emits to the...Ch. 2.8 - Prob. 84PCh. 2.8 - What are the mechanisms of heat transfer?Ch. 2.8 - Which is a better heat conductor, diamond or...Ch. 2.8 - How does forced convection differ from natural...Ch. 2.8 - What is a blackbody? How do real bodies differ...Ch. 2.8 - Define emissivity and absorptivity. What is...Ch. 2.8 - Does any of the energy of the sun reach the earth...Ch. 2.8 - The inner and outer surfaces of a 5-m 6-m brick...Ch. 2.8 - The inner and outer surfaces of a 0.5-cm-thick 2-m...Ch. 2.8 - Reconsider Prob. 292. Using appropriate software,...Ch. 2.8 - Prob. 94PCh. 2.8 - Prob. 95PCh. 2.8 - Prob. 96PCh. 2.8 - Prob. 97PCh. 2.8 - For heat transfer purposes, a standing man can be...Ch. 2.8 - Prob. 99PCh. 2.8 - Prob. 100PCh. 2.8 - A 1000-W iron is left on the ironing board with...Ch. 2.8 - A 7-cm-external-diameter, 18-m-long hot-water pipe...Ch. 2.8 - A thin metal plate is insulated on the back and...Ch. 2.8 - Reconsider Prob. 2103. Using appropriate software,...Ch. 2.8 - The outer surface of a spacecraft in space has an...Ch. 2.8 - Prob. 106PCh. 2.8 - A hollow spherical iron container whose outer...Ch. 2.8 - Some engineers have developed a device that...Ch. 2.8 - Consider a classroom for 55 students and one...Ch. 2.8 - Consider a homeowner who is replacing his...Ch. 2.8 - Prob. 111RPCh. 2.8 - The U.S. Department of Energy estimates that...Ch. 2.8 - A typical household pays about 1200 a year on...Ch. 2.8 - Prob. 114RPCh. 2.8 - Prob. 115RPCh. 2.8 - Prob. 116RPCh. 2.8 - Consider a TV set that consumes 120 W of electric...Ch. 2.8 - Water is pumped from a 200-ft-deep well into a...Ch. 2.8 - Consider a vertical elevator whose cabin has a...Ch. 2.8 - Prob. 120RPCh. 2.8 - In a hydroelectric power plant, 65 m3/s of water...Ch. 2.8 - The demand for electric power is usually much...Ch. 2.8 - The pump of a water distribution system is powered...Ch. 2.8 - Prob. 124RPCh. 2.8 - A 2-kW electric resistance heater in a room is...Ch. 2.8 - Prob. 126FEPCh. 2.8 - A 75-hp compressor in a facility that operates at...Ch. 2.8 - On a hot summer day, the air in a well-sealed room...Ch. 2.8 - A fan is to accelerate quiescent air to a velocity...Ch. 2.8 - A 900-kg car cruising at a constant speed of 60...Ch. 2.8 - Prob. 131FEPCh. 2.8 - Prob. 132FEPCh. 2.8 - A 2-kW pump is used to pump kerosene ( = 0.820...Ch. 2.8 - Prob. 134FEPCh. 2.8 - Prob. 135FEPCh. 2.8 - Prob. 136FEPCh. 2.8 - Prob. 137FEPCh. 2.8 - Heat is transferred steadily through a...Ch. 2.8 - The roof of an electrically heated house is 7 m...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What types of coolant are used in vehicles?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbu...
Fluid Mechanics: Fundamentals and Applications
CONCEPT QUESTIONS
15.CQ3 The ball rolls without slipping on the fixed surface as shown. What is the direction ...
Vector Mechanics for Engineers: Statics and Dynamics
How are relationships between tables expressed in a relational database?
Modern Database Management
What are the design issues for character string types?
Concepts Of Programming Languages
Comprehension Check 7-14
The power absorbed by a resistor can be given by P = I2R, where P is power in units of...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 1 Consider a large plane wall of thickness L = 0.4 m, thermal conductivity k = 2.3 W/m · °C, and surface area A = 20 m². The left side of the wall is maintained at a constant temperature of T1 = 90°C while the right side loses heat by convection to the surrounding air at To = 25°C with a heat transfer coefficient of h = 40 W/m? · °C. Assuming constant thermal conductivity and no heat generation in the wall: (a) Express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall. (b) Obtain a relation for the variation of temperature in the wall by solving the differential equation. (c) Evaluate the rate of heat transfer through the wall.arrow_forwardConsider a large plane wall of thickness L = 0.15 m, thermal conductivity k = 12.6 W/m · °C, and surface area A=22 m2. The left side of the wall is maintained at a constant temperature of T1= 144 °C while the right side loses heat by convection to the surrounding air at T= 0 °C with a heat transfer coefficient of h = 20 W/m2 · °C. Assuming constant thermal conductivity and no heat generation in the wall. Evaluate the rate of heat transfer through the wallarrow_forwardConsider the base plate of a 1200-W household iron that has a thickness of L 0.5 cm, base area of A 300 cm2, and thermal conductivity of k 15 W/m · °C. The inner surface of the base plate is subjected to uniform heat flux generated by the resistance heaters inside, and the outer surface loses heat to the surroundings at T 20°C by convection. Taking the convection heat transfer coefficient to be h 80 W/m2 · °C and disregarding heat loss by radiation. Evaluate the temperatures at the inner and the outer surfaces. Resistance heater 1200 W Base plate Insulation 300 cm? T= 20°C harrow_forward
- Consider a large plane wall of thickness L = 0.4 m, thermal conductivity k = 2.3 W/m · °C, and surface area A = 20 m2. The left side of the wall is maintained at a constant temperature of T1 =90°C while the right side loses heat by convection to the surrounding air at T∞= 25°C with a heat transfer coefficient of h = 40 W/m2· °C. Assuming constant thermal conductivity and no heat generation in the wall:(a) Express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall.(b) Obtain a relation for the variation of temperature in the wall by solving the differential equation.(c) Evaluate the rate of heat transfer through the wall.arrow_forwardq2arrow_forwardA 10-cm-high and 20-cm-wide circuit board houses on its surface 100 closely spaced chips, each generating heat at a rate of 0.08 W and transferring it by convection to the surrounding air at 25°C. Heat transfer from the back surface of the board is negligible. If the convection heat transfer coefficient on the surface of the board is 10 W/m2 ·°C and radiation heat transfer is negligible, the average surface temperature of the chips is (a) 26°C (b) 45°C (c) 15°C (d) 80°C (e) 65°Carrow_forward
- Consider a large 5-cm-thick brass plate (k = 111 W/m·°C) in which heat is generated uniformly at a rate of 2×105 W/m3. One side of the plate is insulated while the other side is exposed to an environment at 25 °C with a heat transfer coefficient of 44 W/m2·°C. (Hint: The heat transfer surfaces of the large plane walls considered in our lecture have the same temperature. The formula is slightly adjusted for this question.) Where is the maximum temperature located? What is the value of the maximum temperature in °C?arrow_forward3. The roof of a house consists of a 15-cm-thick slab (k = 2 W/m · °C) that is 15 m wide and 20 m long. The emissivity of the outer surface of the roof is 0.9, and the convection heat transfer coefficient on that surface is estimated to be 15 W/m2 · °C. The inner surface of the roof is maintained at 15°C. On a clear winter night, the ambient air is reported to be at 10°C while the night sky temperature for radiation heat transfer is 255 K. Considering both radiation and convection heat transfer, determine the outer surface temperature and the rate of heat transfer through the roof.arrow_forwardConsider a person standing in a room at 23°C. Determine the total rate of heat transfer from this person if the exposed surface area and the skin temperature of the person arel.7 m2 and 32°C, respectively, and the convection heat transfer coefficient is 5 W/m2· °C. Take the emissivity of the skin and the clothes to be 0.9, and assume the temperature of the inner surfaces of the room to be the same as the air temperature.arrow_forward
- For heat transfer purposes, a standing man can be modeled as a 30-cm-diameter, 175-cm-long vertical cylinder with both the top and bottom surfaces insulated and with the side surface at an average temperature of 34°C. For a convection heat transfer coefficient of 10 W/m2 ·°C, determine the rate of heat loss from this man by convection in an environment at 20°C.arrow_forwardA layer of pulverized cork 152-mm thick is used as a layer of thermal insulation in a flat wall. The temperature of the cold side of the cork is 4.4℃, and that of the warm side is 82.2℃. The thermal conductivity of the cork at 0 ℃ is 0.036 W/(m · ℃ ), and that at 93.3 ℃ is 0.055 W/(m · ℃ ). The area of the wall is 4.64 m2. What is the rate of heat flow through the wall in watts?arrow_forwardQuestion 2: Consider a 0.8-m-high and 1.5-m-wide glass window with a thickness of 8 mm and a thermal conductivity of k 0.78 W/m · °C. Determine the steady rate of heat transfer through this glass window and the temperature of its inner surface for a day during which the room is maintained at 20°C while the temperature of the outdoors is 10°C. Take the heat transfer coefficients on the inner and outer surfaces of the window to be h1 10 W/m2 · °C and h2 40 W/m2 · °C, which includes the effects of radiation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY