EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 9780100257054
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.8, Problem 12P
At a certain location, wind is blowing steadily at 10 m/s. Determine the
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A wind turbine has a blade length of 20 m. In a given day, average speed of wind for 4 hours is 7 m/s, average speed of wind for another 10 hours is 9 m/s and wind speed is not
sufficient to rotate wind turbine for remaining time in a day. Take Air density p = 1.23 kg/m.
Determine the following:
a)
Maximum possible power output of wind turbine for 4 hours (
b) Maximum possible power output of wind turbine for 8 hours
c)
Maximum possible energy output of turbine in a given day
An air compressor handles 8.5 m3/min of air with a density of 1.26 kg/m3 and a pressure of 1 atm, and it discharges at 550 kPaa with a density of 4.86 kg/m3. The change in specific internal energy across the compressor is 82 kJ/kg and the heat loss by cooling is 24 kJ/kg. Neglecting changes in kinetic and potential energies, the power in kW. (answer in whole number)
At a certain location, wind is blowing steadily at 10 m/s. Determine the mechanical energy of air per unit mass and the power generation potential of a wind turbine with 70-m-diameter blades at that location. Also determine the actual electric power generation assuming an overall efficiency of 30 percent. Take the air density to be 1.25 kg/m3.
Chapter 2 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 2.8 - What is total energy? Identify the different forms...Ch. 2.8 - List the forms of energy that contribute to the...Ch. 2.8 - How are heat, internal energy, and thermal energy...Ch. 2.8 - What is mechanical energy? How does it differ from...Ch. 2.8 - Natural gas, which is mostly methane CH4, is a...Ch. 2.8 - Portable electric heaters are commonly used to...Ch. 2.8 - Prob. 7PCh. 2.8 - Prob. 8PCh. 2.8 - 2–9E Calculate the total potential energy, in Btu,...Ch. 2.8 - Prob. 10P
Ch. 2.8 - Prob. 11PCh. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - A water jet that leaves a nozzle at 60 m/s at a...Ch. 2.8 - Prob. 14PCh. 2.8 - Prob. 15PCh. 2.8 - Consider a river flowing toward a lake at an...Ch. 2.8 - When is the energy crossing the boundaries of a...Ch. 2.8 - Consider an automobile traveling at a constant...Ch. 2.8 - A gas in a pistoncylinder device is compressed,...Ch. 2.8 - A room is heated by an iron that is left plugged...Ch. 2.8 - A room is heated as a result of solar radiation...Ch. 2.8 - Prob. 23PCh. 2.8 - A small electrical motor produces 5 W of...Ch. 2.8 - Prob. 25PCh. 2.8 - 2–26C Lifting a weight to a height of 20 m takes...Ch. 2.8 - Prob. 27PCh. 2.8 - Prob. 28PCh. 2.8 - Prob. 29PCh. 2.8 - Prob. 30PCh. 2.8 - Prob. 31PCh. 2.8 - Prob. 32PCh. 2.8 - Prob. 33PCh. 2.8 - A ski lift has a one-way length of 1 km and a...Ch. 2.8 - The engine of a 1500-kg automobile has a power...Ch. 2.8 - Prob. 36PCh. 2.8 - What are the different mechanisms for transferring...Ch. 2.8 - On a hot summer day, a student turns his fan on...Ch. 2.8 - Prob. 39PCh. 2.8 - A vertical pistoncylinder device contains water...Ch. 2.8 - At winter design conditions, a house is projected...Ch. 2.8 - A water pump increases the water pressure from 15...Ch. 2.8 - Prob. 43PCh. 2.8 - Prob. 44PCh. 2.8 - A university campus has 200 classrooms and 400...Ch. 2.8 - Prob. 46PCh. 2.8 - Consider a room that is initially at the outdoor...Ch. 2.8 - Prob. 48PCh. 2.8 - 2-49 The 60-W fan of a central heating system is...Ch. 2.8 - Prob. 50PCh. 2.8 - An escalator in a shopping center is designed to...Ch. 2.8 - Prob. 52PCh. 2.8 - How is the combined pumpmotor efficiency of a pump...Ch. 2.8 - Prob. 54PCh. 2.8 - Can the combined turbinegenerator efficiency be...Ch. 2.8 - Consider a 2.4-kW hooded electric open burner in...Ch. 2.8 - Prob. 57PCh. 2.8 - Prob. 58PCh. 2.8 - Prob. 59PCh. 2.8 - A geothermal pump is used to pump brine whose...Ch. 2.8 - Prob. 62PCh. 2.8 - Prob. 63PCh. 2.8 - The water in a large lake is to be used to...Ch. 2.8 - A 7-hp (shaft) pump is used to raise water to an...Ch. 2.8 - At a certain location, wind is blowing steadily at...Ch. 2.8 - Reconsider Prob. 265. Using appropriate software,...Ch. 2.8 - Water is pumped from a lake to a storage tank 15 m...Ch. 2.8 - Prob. 69PCh. 2.8 - A hydraulic turbine has 85 m of elevation...Ch. 2.8 - Prob. 71PCh. 2.8 - Water is pumped from a lower reservoir to a higher...Ch. 2.8 - Prob. 73PCh. 2.8 - An oil pump is drawing 44 kW of electric power...Ch. 2.8 - How does energy conversion affect the environment?...Ch. 2.8 - What is acid rain? Why is it called a rain? How do...Ch. 2.8 - Why is carbon monoxide a dangerous air pollutant?...Ch. 2.8 - What is the greenhouse effect? How does the excess...Ch. 2.8 - What is smog? What does it consist of? How does...Ch. 2.8 - Prob. 80PCh. 2.8 - Consider a household that uses 14,000 kWh of...Ch. 2.8 - When a hydrocarbon fuel is burned, almost all of...Ch. 2.8 - Prob. 83PCh. 2.8 - A typical car driven 20,000 km a year emits to the...Ch. 2.8 - What are the mechanisms of heat transfer?Ch. 2.8 - Which is a better heat conductor, diamond or...Ch. 2.8 - How does forced convection differ from natural...Ch. 2.8 - What is a blackbody? How do real bodies differ...Ch. 2.8 - Define emissivity and absorptivity. What is...Ch. 2.8 - Does any of the energy of the sun reach the earth...Ch. 2.8 - The inner and outer surfaces of a 5-m 6-m brick...Ch. 2.8 - The inner and outer surfaces of a 0.5-cm-thick 2-m...Ch. 2.8 - Reconsider Prob. 292. Using appropriate software,...Ch. 2.8 - Prob. 94PCh. 2.8 - Prob. 95PCh. 2.8 - Prob. 96PCh. 2.8 - Prob. 97PCh. 2.8 - For heat transfer purposes, a standing man can be...Ch. 2.8 - Prob. 99PCh. 2.8 - Prob. 100PCh. 2.8 - A 1000-W iron is left on the ironing board with...Ch. 2.8 - A 7-cm-external-diameter, 18-m-long hot-water pipe...Ch. 2.8 - A thin metal plate is insulated on the back and...Ch. 2.8 - Reconsider Prob. 2103. Using appropriate software,...Ch. 2.8 - The outer surface of a spacecraft in space has an...Ch. 2.8 - Prob. 106PCh. 2.8 - A hollow spherical iron container whose outer...Ch. 2.8 - Consider a vertical elevator whose cabin has a...Ch. 2.8 - Consider a homeowner who is replacing his...Ch. 2.8 - Prob. 110RPCh. 2.8 - Prob. 111RPCh. 2.8 - Prob. 112RPCh. 2.8 - 2–113 The U.S. Department of Energy estimates that...Ch. 2.8 - Prob. 114RPCh. 2.8 - Prob. 115RPCh. 2.8 - Prob. 116RPCh. 2.8 - Prob. 117RPCh. 2.8 - Consider a TV set that consumes 120 W of electric...Ch. 2.8 - Water is pumped from a 200-ft-deep well into a...Ch. 2.8 - Prob. 120RPCh. 2.8 - Prob. 121RPCh. 2.8 - In a hydroelectric power plant, 65 m3/s of water...Ch. 2.8 - The demand for electric power is usually much...Ch. 2.8 - The pump of a water distribution system is powered...Ch. 2.8 - On a hot summer day, the air in a well-sealed room...Ch. 2.8 - Prob. 126FEPCh. 2.8 - A 2-kW electric resistance heater in a room is...Ch. 2.8 - A 900-kg car cruising at a constant speed of 60...Ch. 2.8 - Prob. 129FEPCh. 2.8 - Prob. 130FEPCh. 2.8 - Prob. 131FEPCh. 2.8 - A 2-kW pump is used to pump kerosene ( = 0.820...Ch. 2.8 - Prob. 133FEPCh. 2.8 - Prob. 134FEPCh. 2.8 - Prob. 135FEPCh. 2.8 - Prob. 136FEPCh. 2.8 - Prob. 137FEPCh. 2.8 - Heat is transferred steadily through a...Ch. 2.8 - The roof of an electrically heated house is 7 m...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
1.2 Explain the difference between geodetic and plane
surveys,
Elementary Surveying: An Introduction To Geomatics (15th Edition)
How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbu...
Fluid Mechanics: Fundamentals and Applications
The solid steel shaft AC has a diameter of 25 mm and is supported by smooth bearings at D and E. It is coupled ...
Mechanics of Materials (10th Edition)
Convert each of the following binary representations to its equivalent base ten form: a. 101010 b. 100001 c. 10...
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
Comprehension Check 7-14
The power absorbed by a resistor can be given by P = I2R, where P is power in units of...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Wind blows steadily at 7 m/s into the blades of a wind turbine. Compute the actual electric power generation of the system assuming an overall efficiency of 30 percent of a wind turbine with 80-m-diameter blades. The air density is 1.25 kg/m3. Answer in KW.arrow_forwardAt a certain location, wind is blowing steadily at 9 m/s. Determine the mechanical energy of air per unit mass and the power generation potential of a wind turbine with 80-m-diameter blades at that location. Also, determine the actual electric power generation, assuming an overall efficiency of 30 percent. Take the air density to be 1.25 kg/m³. The mechanical energy of air per unit mass is The power generation potential of the wind turbine is The actual electric power generation is kW. 1kJ/kg. kW.arrow_forwardAn air compressor handles 8.5 m3/min of air with a density of 1.26 kg/m³ and a pressure of 1 atm and it discharges at 445 kPa (gage) with a density of 4.86 kg/m³. The change in specific internal energy across the compressor is 82 kJ kg, and the heat loss by cooling is 24 kJ /kg. Neglecting changes in kinetic and potential energies, find the power in kW.arrow_forward
- Wind blows steadily at 7 m/s into the blades of a wind turbine. Compute the ideal mechanical energy available in the wind for the system assuming an overall efficiency of 30 percent of a wind turbine with 80-m-diameter blades. The air density is 1.25 kg/m3. Answer in KW.arrow_forwardAn airport escalator is designed to move 40 people, 75 kg each, upward at a constant speed of 0.6 m/s at 45o slope. Determine the minimum power input needed to drive this escalator. Neglect friction and drag. Please give your answer in kW.arrow_forwardConsider a wind turbine with a blade span diameter of 142 m installed at a site subjected to steady winds at 7 m/s. By considering the efficiency of the wind-turbine and taking the overall efficiency of the wind turbine to be 54 percent and the air density to be 1.08 kg/m3, determine the electric power (kW) generated by this wind turbine to 1 decimal place.arrow_forward
- A 60 mm diameter pipe enlarges to a 90 mm diameter pipe. In the smaller pipe, the density of a steady flow gas is 150 kg/m3 and the velocity is 40 m/s, whereas in the larger pipe the velocity is 21 m/s. Determine the density of the gas in the larger pipe. Provide your answer in kg/m3.arrow_forwardAt a certain location, wind is blowing steadily at 7 m/s as shown in Figure 1 below. Determine the mechanical energy of air per unit mass and the power generation potential of a wind turbine with 80-m-diameter blades at that location. Also determine the actual electric power generation assuming an overall efficiency of 30 percent. Take the air density to be 1.25 kg/m?. Wind Wind turbine Diameter Figure 1arrow_forwardThe velocity of wind at a wind turbine is measured to be 6 m/s. The blade span diameter is 24 m and the efficiency of the wind turbine is 29 percent. The density of air is 1.22 kg/m3. The horizontal force exerted by the wind on the supporting mast of the wind turbine is (a) 2524 N (b) 3127 N (c) 3475 N (d) 4138 N (e) 4313 Narrow_forward
- A reciprocating compressor draws in 500 ftImin of air whose density is 0.079 Ibm/t° and discharges it at a density of 0.304 Ibm/t°. The pressure in the suction and discharge are 15 psia and 80 psia, respectively. The increase in the specific internal energy is 33.8 BTU/b and the heat transferred from the air by cooling is 13 BTU/lb. Determine the work in the air, in Hp.arrow_forwardWhen water is pumped into a water tank 20 m above a lake with a flow rate of 70 l/s, 20.4kW of electrical power is consumed. Determine the efficiency of the pump-motor group by ignoring the friction losses in the pipes and the change in kinetic energy. Determine the pressure difference between the inlet and outlet of the pump.arrow_forwardA boiler requires 100 000 m3/hr of standard air. The mechanical efficiency of fan to be installed is 70%. Determine the size of driving motor needed assuming fan can deliver a pressure head of 160mm of water and outlet velocity of 20m/s. ANSWER: 60 kwarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license