General Physics, 2nd Edition
2nd Edition
ISBN: 9780471522782
Author: Morton M. Sternheim
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 27, Problem 38E
(a)
To determine
The velocity of electron in lowest energy level.
(b)
To determine
The value of atomic number for which the Bohr model fails.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An atom of iron has a radius of
156. pm
and the average orbital speed of the electrons in it is about
×5.7*10^7 m/s.
Calculate the least possible uncertainty in a measurement of the speed of an electron in an atom of iron. Write your answer as a percentage of the average speed, and round it to 2 significant digits.
A certain atom remains in an excited state for about 51.7 ns before emitting a 2.15-eV photon and transitioning to the ground state. What is the uncertainty in the frequency of the photon in Hz?
atoms can occupy only certain discrete energy levels. Consider a gas at a temperature of 2 500 K whose atoms can occupy only two energy levels separated by 1.50 eV, where 1 eV (electron volt) is an energy unit equal to 1.60 × 10-19 J. Determine the ratio of the number of atoms in the higher energy level to the number in the lower energy level.
Chapter 27 Solutions
General Physics, 2nd Edition
Ch. 27 - Prob. 1RQCh. 27 - Prob. 2RQCh. 27 - Prob. 3RQCh. 27 - Prob. 4RQCh. 27 - Prob. 5RQCh. 27 - Prob. 6RQCh. 27 - Prob. 7RQCh. 27 - Prob. 8RQCh. 27 - Prob. 9RQCh. 27 - Prob. 10RQ
Ch. 27 - Prob. 1ECh. 27 - Prob. 2ECh. 27 - Prob. 3ECh. 27 - Prob. 4ECh. 27 - Prob. 5ECh. 27 - Prob. 6ECh. 27 - Prob. 7ECh. 27 - Prob. 8ECh. 27 - Prob. 9ECh. 27 - Prob. 10ECh. 27 - Prob. 11ECh. 27 - Prob. 12ECh. 27 - Prob. 13ECh. 27 - Prob. 14ECh. 27 - Prob. 15ECh. 27 - Prob. 16ECh. 27 - Prob. 17ECh. 27 - Prob. 18ECh. 27 - Prob. 19ECh. 27 - Prob. 20ECh. 27 - Prob. 21ECh. 27 - Prob. 22ECh. 27 - Prob. 23ECh. 27 - Prob. 24ECh. 27 - Prob. 25ECh. 27 - Prob. 26ECh. 27 - Prob. 27ECh. 27 - Prob. 28ECh. 27 - Prob. 29ECh. 27 - Prob. 30ECh. 27 - Prob. 31ECh. 27 - Prob. 32ECh. 27 - Prob. 33ECh. 27 - Prob. 34ECh. 27 - Prob. 35ECh. 27 - Prob. 36ECh. 27 - Prob. 37ECh. 27 - Prob. 38ECh. 27 - Prob. 39ECh. 27 - Prob. 41ECh. 27 - Prob. 42ECh. 27 - Prob. 43ECh. 27 - Prob. 44ECh. 27 - Prob. 45ECh. 27 - Prob. 46ECh. 27 - Prob. 47ECh. 27 - Prob. 48E
Knowledge Booster
Similar questions
- The quantum state of an electron in an atom is described by quantum numbers n = 6, ℓ = 4, and mℓ = 1. The orbital total angular momentum of the electron is measured to be x × h/2π, where h is Planck’s constant. What is the number x(remember to use the scientific notation)?arrow_forwardA) By what factor is the uncertainty of the electron's position(1.36×10-4 m) larger than the diameter of the hydrogen atom?(Assume the diameter of the hydrogen atom is 1.00×10-8 cm.) B) Use the Heisenberg uncertainty principle to calculate Δx for a ball (mass = 122 g, diameter = 8.50 cm) with Δv = 0.425 m/s. C) The uncertainty of the (above) ball's position is equal to what factor times the diameter of the ball?arrow_forwardAn atom in an excited state of 4.7 eV emits a photon and ends up in the ground state. The lifetime of the excited state is 1.0 x 10-13 s. (a) What is the energy uncertainty of the emitted photon? (b) What is the spectral line width (in wavelength) of the photon?arrow_forward
- Imagine another universe in which the value of Planck’s constant is 0.0663 J . s, but in which the physical laws and all other physical constants are the same as in our universe. In this universe, two physics students are playing catch. They are 12 m apart, and one throws a 0.25 kg ball directly toward the other with a speed of 6.0 m/s. (a) What is the uncertainty in the ball’s horizontal momentum, in a direction perpendicular to that in which it is being thrown, if the student throwing the ball knows that it is located within a cube with volume 125 cm3 at the time she throws it? (b) By what horizontal distance could the ball miss the second student?arrow_forwardThe speed of an electron is measured to within an uncertainty of 2.0 × 104 m/s. What is the size of the smallest region of space in which the electron can be confined?arrow_forwardThe radii of atomic nuclei are of the order of 5.0 * 10-15 m. (a) Estimate the minimum uncertainty in the momentum of a proton if it is confined within a nucleus. (b) Take this uncertainty in momentum to be an estimate of the mag- nitude of the momentum. Use the relativistic relationship between energy and momentum, Eq. (37.39), to obtain an estimate of the ki- netic energy of a proton confined within a nucleus. (c) For a proton to remain bound within a nucleus, what must the magnitude of the (negative) potential energy for a proton be within the nucleus? Give your answer in eV and in MeV. Compare to the potential energy for an electron in a hydrogen atom, which has a magnitude of a few tens of eV. (This shows why the interaction that binds the nucleus together is called the “strong nuclear force.”)arrow_forward
- What is the average radius of the orbit of an electron in the n=2 energy level of an oxygen atom (Z=8)? Express your answer in pico-meters.arrow_forwardWhat are the (a) energy, (b) magnitude of the momentum, and (c) wavelength of the photon emitted when a hydrogen atom undergoes a transition from a state with n = 4 to a state with n = 2? (a) Number 2.55 Units eV (b) Number 1.3617 Units kg-m/s or N-s (c) Number 4.865976353 Units This answer has no unitsarrow_forwardWhen a hydrogen atom undergoes a transition from n=3 to n=2 level, a photon with λ=656.5 nm is emitted. (a) If we imagine the atom as an electron in a one-dimensional box, what is the width of the box so that the transition from n=3 to n=2 corresponds to the emission of a photon of this wavelength? (b) For a box with the width calculated in (a), what is the ground energy state? (c) Do you think a one-dimensional box is a good model for a hydrogen atom? Because?arrow_forward
- The quantum-mechanical treatment of the H atom gives the energy, E, of the electron as a function of n: where h is Planck’s constant, me is the electron mass, and a0 is 52.92x10-12 m. (a) Write the expression in the form E = -(constant)(1/n2), evaluate the constant (in J), and compare it with the corresponding expression from Bohr’s theory. (b) Use the expression from part (a) to find DE between n = 2 and n=3.arrow_forwardThe quantum state of an electron in an atom is described by quantum numbers n = 6, ℓ = 5, and mℓ = 2. The z-component orbital angular momentum of the electron is measured to be x × h/2π, where h is Planck’s constant. What is the number x (remember to use the scientific notation)?arrow_forwardA certain atom has an energy level 3.60 eV above the ground state. When excited to this state, atom remains for 6.00 us, on the average, before emits a photon and returns to the ground state. What is the smallest possible uncertainty in energy of the photon?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning