Concept explainers
Figure P26.6 represents a section of a conductor of nonuniform diameter carrying a current of I = 5.00 A. The radius of cross-section A1 is r1 = 0.400 cm. (a) What is the magnitude of the current density across A1? The radius r2 at A2 is larger than the radius r1 at A1. (b) Is the current at A2 larger, smaller, or the same? (c) Is the current density at A2 larger, smaller, or the same? Assume A2 = 4A1. Specify the (d) radius, (e) current, and (f) current density at A2.
Figure P26.6
(a)
The magnitude of the current density across
Answer to Problem 6P
The magnitude of the current density across
Explanation of Solution
Given information: Current carried by a conductor is
Write the expression for the area of cross section of a conductor.
Here,
Substitute
Thus, the area of cross section of a conductor is
Formula to calculate the current density across
Here,
Substitute
Thus, the magnitude of the current density across
Conclusion:
Therefore, the magnitude of the current density across
(b)
The reason that the current at
Answer to Problem 6P
The current at
Explanation of Solution
Given information: Current carried by a conductor is
The current is not depending on cross sectional area. So, the current at
Thus, the density at
Conclusion:
Therefore, the density at
area. So, the current at
(c)
The reason that the current density at
Answer to Problem 6P
The current density at
Explanation of Solution
Given information: Current carried by a conductor is
From equation (2),
Formula to calculate the current density across
Here,
Formula to calculate the current density across
Here,
From above relations, the current density is inversely proportional to area of cross section. From the figure given in the question, it is shown that:
Hence, the current density at
Thus, the current density at
Conclusion:
Therefore, the current density at
(d)
The radius of cross section at
Answer to Problem 6P
The radius of cross section at
Explanation of Solution
Given information: Current carried by a conductor is
It is given that the expression for the crossectional area is:
From equation (1),
Write the expression for the area of cross section of a conductor
Write the expression for the area of cross section of a conductor
Here,
Substitute
Substitute
Thus, the area of cross section of a conductor is
Thus, the radius of cross section at
Conclusion:
Therefore, the radius of cross section at
(e)
The current for cross section at
Answer to Problem 6P
The current for cross section at
Explanation of Solution
Given information: Current carried by a conductor is
The current is not depending on cross sectional area. So, the current at
Thus, the current for cross section at
Conclusion:
Therefore, the current for cross section at
(f)
The magnitude of the current density across
Answer to Problem 6P
The magnitude of the current density across
Explanation of Solution
Given information: Current carried by a conductor is
Write the expression for the area of cross section of a conductor
Here,
Substitute
Thus, the area of cross section of a conductor is
Formula to calculate the current density across
Substitute
Thus, the magnitude of the current density across
Conclusion:
Therefore, the magnitude of the current density across
Want to see more full solutions like this?
Chapter 26 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Fundamentals Of Thermodynamics
Organic Chemistry
Introductory Chemistry (6th Edition)
Chemistry: Atoms First
Biology: Life on Earth (11th Edition)
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning