Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 26, Problem 68PCE
A convex lens is held over a piece of paper outdoors on a sunny day. When the paper is held 26 cm below the lens, the sunlight is focused on the paper and the paper ignites. What is the focal length of the lens?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 26 Solutions
Physics (5th Edition)
Ch. 26.1 - A ray of light reflects from a horizontal flat...Ch. 26.2 - A meterstick is placed 40 cm in front of a plane...Ch. 26.3 - Rank the following spherical mirrors in order of...Ch. 26.4 - A spherical mirror with an object at the distance...Ch. 26.5 - (a) As a beam of light passes from flint glass to...Ch. 26.6 - The lenses shown in Figure 26-49 have objects that...Ch. 26.7 - An object at the distance do = 15 cm from a lens...Ch. 26.8 - Referring to Figure 26-53, do you expect the index...Ch. 26 - Two plane mirrors meet at right angles at the...Ch. 26 - Two plane mirrors meet at right angles at the...
Ch. 26 - What is the radius of curvature of a plane mirror?...Ch. 26 - Dish receivers for satellite TV always use the...Ch. 26 - Suppose you would like to start a fire by focusing...Ch. 26 - Prob. 6CQCh. 26 - A swimmer at point 8 in Figure 26-55 needs help...Ch. 26 - When you observe a mirage on a hot day, what are...Ch. 26 - Sitting on a deserted beach one evening, you watch...Ch. 26 - The Disappearing Eyedropper The photograph in...Ch. 26 - The Invisible Man In the H. G. Wells novel The...Ch. 26 - Whats the Secret? The top of Figure 26-57 shows...Ch. 26 - A laser beam is reflected by a plane mirror. It is...Ch. 26 - The angle between the Sun and a rescue aircraft is...Ch. 26 - The reflecting surfaces of two mirrors form a...Ch. 26 - A ray of light reflects from a plane mirror with...Ch. 26 - Predict/Calculate A small vertical mirror hangs on...Ch. 26 - Sunlight enters a room at an angle of 32 above the...Ch. 26 - You stand 1.50 m in front of a wall and gaze...Ch. 26 - Predict/Calculate Standing 2.3 m in front of a...Ch. 26 - How many times does the light beam shown in Figure...Ch. 26 - If you view a clock in a mirror as in Figure...Ch. 26 - A 13.5-foot-long, nearsighted python is stretched...Ch. 26 - (a) How rapidly does the distance between you and...Ch. 26 - You are 1.8 m tall and stand 2.8 m from a plane...Ch. 26 - The rear window in a car is approximately a...Ch. 26 - Predict/Calculate You hold a small plane mirror...Ch. 26 - Prob. 16PCECh. 26 - Astronomers often use large mirrors in their...Ch. 26 - A section of a sphere has a radius of curvature of...Ch. 26 - A mirrored-glass gazing globe in a garden is 31.9...Ch. 26 - Sunlight reflects from a concave piece of broken...Ch. 26 - You hold a shiny tablespoon at aims length and...Ch. 26 - You hold a shiny tablespoon at arms length and...Ch. 26 - An object is placed to the left of a concave...Ch. 26 - An object is placed to the left of a convex...Ch. 26 - A small object is located 36.0 cm in front of a...Ch. 26 - An object with a height of 33 cm is placed 2.0 m...Ch. 26 - An object with a height of 33 cm is placed 2.0 m...Ch. 26 - An object with a height of 33 cm is placed 2.0 m...Ch. 26 - Find the location and magnification of the image...Ch. 26 - During a daytime football game you notice that a...Ch. 26 - A convex mirror on the passenger side of a car...Ch. 26 - Predict/Calculate A magician wishes to create the...Ch. 26 - A person 1.8 m tall stands 0.86 m from a...Ch. 26 - Shaving/makeup mirrors typically have one flat and...Ch. 26 - The Hale Telescope The 200-inch-diameter concave...Ch. 26 - A concave mirror produces a virtual image that is...Ch. 26 - A concave mirror produces a real image that is...Ch. 26 - The virtual image produced by a convex mirror is...Ch. 26 - You view a nearby tree in a concave mirror. The...Ch. 26 - A shaving/makeup mirror produces an erect image...Ch. 26 - A concave mirror with a focal length of 36 cm...Ch. 26 - Predict/Explain When a ray of light enters a glass...Ch. 26 - Samurai Fishing A humorous scene in Akira...Ch. 26 - Prob. 44PCECh. 26 - Predict/Explain A kitchen has twin side-by-side...Ch. 26 - Light travels a distance of 0.902 m in 4.00 ns in...Ch. 26 - Prob. 47PCECh. 26 - The angle of refraction of a ray of light...Ch. 26 - Ptolemys Optics One of the many works published by...Ch. 26 - A submerged scuba diver looks up toward the calm...Ch. 26 - Prob. 51PCECh. 26 - Light is refracted as it travels from a point A in...Ch. 26 - You have a semicircular disk of glass with an...Ch. 26 - The observer in Figure 26-65 is positioned so that...Ch. 26 - A coin is lying at the bottom of a pool of water...Ch. 26 - Prob. 56PCECh. 26 - Prob. 57PCECh. 26 - Predict/Calculate Suppose the glass paperweight in...Ch. 26 - While studying physics at the library late one...Ch. 26 - A horizontal beam of light enters a 45 90 45 prism...Ch. 26 - A laser team enters one of the sloping faces of...Ch. 26 - (a) Use a ray diagram to determine the approximate...Ch. 26 - (a) Use a ray diagram to determine the approximate...Ch. 26 - An object is a distance ft2 from a convex lens (a)...Ch. 26 - An object is a distance 2f from a convex lens (a)...Ch. 26 - Two lenses that are 35 cm apart are used to form...Ch. 26 - Two lenses that are 35 cm apart are used to form...Ch. 26 - A convex lens is held over a piece of paper...Ch. 26 - A concave lens has a focal length of 39cm. Find...Ch. 26 - When an object is located 38 cm to the left of a...Ch. 26 - An object with a height of 2 54 cm is placed 36 3...Ch. 26 - A lens for a digital camera has a focal length...Ch. 26 - Predict/Calculate An object is located to the left...Ch. 26 - Predict/Calculate You have two lenses at your...Ch. 26 - (a) Determine the distance from lens 1 to the...Ch. 26 - (a) Determine the distance from lens 1 to the...Ch. 26 - Predict/Calculate An object is located to the left...Ch. 26 - BIO Predict/Calculate Albert is nearsighted and...Ch. 26 - A small insect viewed through a convex lens is 1.8...Ch. 26 - Predict/Calculate A friend tells you that when he...Ch. 26 - Predict/Calculate A friend tells you that when she...Ch. 26 - Prob. 82PCECh. 26 - Predict/Explain You take a picture of a rainbow...Ch. 26 - The index of refraction for red light in a certain...Ch. 26 - A horizontal incident beam consisting of white...Ch. 26 - Prob. 86PCECh. 26 - CE Jurassic Park A T. rex chases the heroes of...Ch. 26 - CE Predict/Explain If a lens is immersed in water...Ch. 26 - CE Predict/Explain A glass slab surrounded by air...Ch. 26 - CE Inverse Lenses Suppose we mold a hollow piece...Ch. 26 - Standing 2 5 m in front of a small vertical mirror...Ch. 26 - Prob. 92GPCh. 26 - (a) Find the two locations where an object can be...Ch. 26 - A convex mirror with a focal length of -85 is used...Ch. 26 - Prob. 95GPCh. 26 - Predic/Calculate A film of oil with an index of...Ch. 26 - Figure 26-75 shows a ray of light entering one end...Ch. 26 - Suppose the fiber depicted in Figure 26-75 has an...Ch. 26 - An arrow 2.00 cm long is located 75.0 cm from a...Ch. 26 - A convex lens with f1 = 200 cm is mounted 40.0 cm...Ch. 26 - Two thin lenses with focal lengths f1 and f2, are...Ch. 26 - When an object is placed a distance d0 in front of...Ch. 26 - A Slab of Glass Give a symbolic expression for the...Ch. 26 - Least Time A beam of light propagates from point A...Ch. 26 - The ray of light shown in Figure 26-79 passes from...Ch. 26 - Predict/Calculate A beam of light enters the...Ch. 26 - A converging lens with a focal length in air of f...Ch. 26 - A diverging lens with f = 12.5 cm is made from...Ch. 26 - Calculate the focal length of a lens in water,...Ch. 26 - Suppose a lens is made from fused quartz (glass),...Ch. 26 - Referring to Example 26-5 Suppose the radius of...Ch. 26 - Predict/Calculate Referring to Example 26-5 object...Ch. 26 - Referring to Example 26-18 (a) What object...Ch. 26 - Predict/Calculate Referring to Example 26-18...
Additional Science Textbook Solutions
Find more solutions based on key concepts
an object which can be seen through clearly.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
If acceleration is proportional to the net force or is equal to net force.
Conceptual Physics (12th Edition)
A 5000-pF capacitor is charged to 100 V and then quickly connected to an 80-mH inductor. Determine (a) the maxi...
University Physics Volume 2
A thin plate has a round hole whose diameter in its rest frame is D. The plate is parallel to the ground and mo...
Modern Physics
10. 250=________ km
Applied Physics (11th Edition)
Q17.11 The units of specific heat c are J/kg · K, but the units of heat of fusion Lf or heat of vaporization Lv...
University Physics with Modern Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Under what circumstances will an image be located at the focal point of a spherical lens or mirror?arrow_forwardAn object of height 3 cm is placed at a distance of 25 cm in front of a converging lens of focal length 20 cm, to be referred to as the first lens. Behind the lens there is another converging lens of focal length 20 cm placed 10 cm from the first lens. There is a concave mirror of focal length 15 cm placed 50 cm from the second lens. Find the location, orientation, and size of the final image.arrow_forwardAn object of height 3 cm is placed at 25 cm in front of a converging lens of focal length 20 cm. Behind the lens there is a concave mirror of focal length 20 cm. The distance between the lens and the mirror is 5 cm. Find the location, orientation and size of the final image.arrow_forward
- Au object of height 3.0 cm is placed at 25 cm in front of a diverging lens of focal length 20 cm. Behind the diverging lens, there is a converging lens of focal length 20 cm. The distance between the lenses is 5.0 cm. Fluid the location and size of the final image.arrow_forwardThe radius of curvature of the left-hand face of a flint glass biconvex lens (n = 1.60) has a magnitude of 8.00 cm, and the radius of curvature of the right-hand face has a magnitude of 11.0 cm. The incident surface of a biconvex lens is convex regardless of which side is the incident side. What is the focal length of the lens if light is incident on the lens from the left?arrow_forwardA group of students is given two converging lenses. Lens A has a focal length of 12.5 cm, and lens B has a focal length of 50.0 cm. The diameter of each lens is 6.50 cm. The students are asked to construct a microscope from these lenses that has the same magnification as the telescope in Problem 80 if possible, and they have this discussion: Avi: These are the same lenses we used to make a telescope. So they wont work as a microscope. Microscopes are for looking at close objects; telescopes are for looking at far objects. Cameron: All you need for a microscope are two converging lenses. I think the difference from a telescope is just that the order of the lenses is switched. A microscope is just a backward telescope. Shannon: I think the order of the lenses doesnt matter because the magnification is inversely proportional to both focal lengths. I think we have to adjust the distance between the lenses. a. What do you think? b. If a microscope can be constructed with these two lenses, describe its design. What is the minimum separation of the lenses? Where must you place the object?arrow_forward
- An object of height 2 cm is placed at 50 cm in front of a diverging lens of focal length 40 cm. Behind the lens, there is a convex mirror of focal length 15 cm placed 30 cm from the converging lens. Find the location, orientation, and size of the final image.arrow_forwardWhat will be the angular magnification of a convex lens with the focal length 2.5 cm?arrow_forwardYou view an object by holding a 2.5 cm-focal length magnifying glass 10 cm away from it. How far from your eye should you hold the magnifying glass to obtain a magnification of 10 ?arrow_forward
- In a reflecting telescope the objective is a concave mirror of radius of curvature 2m and an eyepiece is a convex lens of focal length 5 cm. Find the apparent size of a 25-m tree at a distance of 10 km that you would perceive when looking through the telescope.arrow_forwardA converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forwardAn observer to the right of the mirror-lens combination shown in Figure P36.89 (not to scale) sees two real images that are the same size and in the same location. One image is upright, and the other is inverted. Both images are 1.50 times larger than the object. The lens has a focal length of 10.0 cm. The lens and mirror are separated by 40.0 cm. Determine the focal length of the mirror.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY