Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 68AP
(a)
To determine
The proof for
(b)
To determine
The proof for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Cylindrical-conductors has inner and outer radii of
15 mm and 50 mm, respectively. If V(p = 15 mm) = 0 V and V(p = 50 mm) = 200 V, &r = 10
%3D
%3D
%D
calculate :
a. V, E, and D at p = 20 mm
b. Ps on each plate.
E = E1
E = 0
E= E1
E= E1
The electric field is measured all over a cubical surface, and the pattern of field detected is shown in the figure above. On the right side
of the cube, the electric field has magnitude Ej = 426 V/m, and the angle between the electric field and the surface of the cube is
0 = 15 degrees. On the bottom of the cube, the electric field has the same magnitude Ej, and the angle between the electric field and
the surface of the cube is also 0 = 15 degrees. On the top of the cube and the left side of the cube, the electric field is zero. On half of
the front and back faces, the electric field has magnitude Ej and is parallel to the face; on the other half of the front and back faces, the
electric field is zero. One edge of the cube is 41 cm long.
Part 1
What is the net electric flux on this cubical surface?
Net electric flux =
i
V•m
Save for Later
Attempts: 0 of 4 used
Submit Answer
A cylindrical capacitor consists of a solid inner conducting core with radius 0.270 cm, surrounded by an outer hollow conducting tube. The two conductors are separated by air, and the length of the cylinder is 13.0 cm. The capacitance is 39.0 pF.
Part A: Calculate the inner radius of the hollow tube.
r=__cm
Part B: When the capacitor is charged to 135 V, what is the charge per unit length λ on the capacitor?
λ=__C/m
Chapter 25 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 25.1 - two points and are located within a region in...Ch. 25.2 - QUICK QUIZ 24.2 The labeled points in Figure 24.4...Ch. 25.3 - In Figure 24.8b, take q2, to be a negative source...Ch. 25.4 - In a certain region of space, the electric...Ch. 25 - Prob. 1OQCh. 25 - Prob. 2OQCh. 25 - Prob. 3OQCh. 25 - Prob. 4OQCh. 25 - Prob. 5OQCh. 25 - Prob. 6OQ
Ch. 25 - Prob. 7OQCh. 25 - Prob. 8OQCh. 25 - Prob. 9OQCh. 25 - Prob. 10OQCh. 25 - Prob. 11OQCh. 25 - Prob. 12OQCh. 25 - Prob. 13OQCh. 25 - Prob. 14OQCh. 25 - Prob. 15OQCh. 25 - Prob. 1CQCh. 25 - Prob. 2CQCh. 25 - When charged particles are separated by an...Ch. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - Oppositely charged parallel plates are separated...Ch. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - How much work is done (by a battery, generator, or...Ch. 25 - Prob. 5PCh. 25 - Starting with the definition of work, prove that...Ch. 25 - Prob. 7PCh. 25 - (a) Find the electric potential difference Ve...Ch. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - Two point charges Q1 = +5.00 nC and Q2 = 3.00 nC...Ch. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Given two particles with 2.00-C charges as shown...Ch. 25 - Prob. 20PCh. 25 - Four point charges each having charge Q are...Ch. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Show that the amount of work required to assemble...Ch. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 32PCh. 25 - How much work is required to assemble eight...Ch. 25 - Four identical particles, each having charge q and...Ch. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - The electric field magnitude on the surface of an...Ch. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53APCh. 25 - Prob. 54APCh. 25 - Prob. 55APCh. 25 - Prob. 56APCh. 25 - Prob. 57APCh. 25 - Prob. 58APCh. 25 - Prob. 59APCh. 25 - Prob. 60APCh. 25 - Prob. 61APCh. 25 - Prob. 62APCh. 25 - Prob. 63APCh. 25 - Prob. 64APCh. 25 - Prob. 65APCh. 25 - Prob. 66APCh. 25 - Prob. 67APCh. 25 - Prob. 68APCh. 25 - Review. Two parallel plates having charges of...Ch. 25 - When an uncharged conducting sphere of radius a is...Ch. 25 - Prob. 71CPCh. 25 - Prob. 72CPCh. 25 - Prob. 73CPCh. 25 - Prob. 74CPCh. 25 - Prob. 75CPCh. 25 - Prob. 76CPCh. 25 - Prob. 77CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The following are electron carriers in a hypothetical biological system: Electron Carriers (E° , V) A (0.17 V), B (0.04 V), C (0.31 V), D (-0.65 V), E (-0.25 V). a. Which electron carrier will be the best electron donor? b. Which electron carrier will be the final electron acceptor?arrow_forwardWhat is the number density of free electron carries in the metallic element nickel if the electrons available for electrical conduction is 1 e- per nickel atom? The atomic mass of nickel is 58.6934 g/mole and the density of nickel is 8.902 g/cm3. a. 3.32 x 1028 e- ' s /m3 b. 1.56 x 1029 e- ' s /m3 c. 5.64 x 1028 e- ' s /m3 d. 9.13 x 1028 e- ' s /m3 e. 7.63 x 1028 e- ' s /m3arrow_forwardProblem 1: White dwarf star A white dwarf star is essentially a degenerate electron gas, with a bunch of nuclei mixed in to balance the charge and to provide the gravitational attraction that holds the star together. White dwarf stars tend to be extremely hot by our standards; nevertheless, it is an excellent approximation in this problem to set T=0. The gravitational potential energy inside a star of uniform density is Ugrav = 3 см2 a) Assuming that the star contains one proton and one neutron for each electron, and that the electrons are nonrelativistic, show that the total (kinetic) energy of the degenerate electrons equals h²M³ Ukinetic = (0.0088)- męm R? b) The equilibrium radius of the white dwarf is that which minimize the total energy Ugrav + Ukinetie: Sketch the total energy as a function of R, and find a formula for the equilibrium radius in terms of the mass. As the mass increases, does the radius increase or decrease? Does this make sense? c) Evaluate the equilibrium radius…arrow_forward
- Ggarrow_forwardA close analogy exists between the flow of energy by heat because of a temperature difference (see Section 20.7) and the flow of electric charge because of a potential difference. In a metal, energy dQ and electrical charge dq are both transported by free electrons. Consequently, a good electrical conductor is usually a good thermal conductor as well. Consider a thin conducting slab of thickness dx, area A, and electrical conductivity o, with a potential difference dv between opposite faces. (a) Show that the current I = dq/dt is given by the equation on the left: Charge conduction Thermal conduction dq TA dt JdT| kA dt dQ | dx |AP| |dx In the analogous thermal conduction equation on the right (Eq. 20.15), the rate dQ/dt of energy flow by heat (in Sl units of joules per second) is due to a temperature gradient dT/dx in a material of thermal conductivity k. (b) State analogous rules relating the direction of the electric current to the change in potential and relating the direction of…arrow_forward1. Suppose a two-conductor system consists of two infinitesimally thin con- ductive spherical shells, nested one inside the other, and both centered at the origin. The inner shell has a radius of a. and the outer shell has a radius of b. The region between the shells is free space. find the equation for the capaci- tance of this two-conductor system. b aarrow_forward
- Match the equivalent quantities: 160.2 µC A. 1.602 x 10-4c 160.2 nC B. 2.56 m v k C. 25600 m v 256 cm D. 9 x 10° N-m2/c2 E. 1.602 x 10- carrow_forwardConsider electrons flowing in copper. a) Compute the average time between collisions for free electrons in copper. (Hint: The density of free electrons in copper is 8.44 x 1028 electrons / m3). b) Due to quantum mechanical effects, electrons in copper have a speed of about 106 m/s at room temperature. Show that electrons moving at such speeds will travel an average distance of 25 nanometers between collisions.arrow_forward5. A plastic rod is rubbed with wool, producing a distribution of positive and negative surplus charge that is concentrated in two locations on the rod and two on the wool. This distribu- tion can be approximated as two pairs of small balls of charge as shown in Figure P26.5. The distance d is 30.0 mm, and the magnitude of the charge on each ball is 2.00 µC. If 34.0 J of work went into thermal energy as the rod and wool heated up, how much work was done on the system? Figure P26.5 2d- 2d- rod wool -arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY