Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 61AP
To determine
The work done on the charges to brought from infinity to charge a spherical shell.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A charge per unit length given byd = 2.40 µC/m is distributed uniformly along the circumference of a circle with a radius of 25.0 cm.
How much external energy is required to bring a charge of 35.0 µC from infinity to the center of the circle? (answer in Joules)
An engineering intern has a spherical shell of radius R = 0.172 m and wishes to charge it by bringing in charges from a long distance away.
Determine the amount of work (in J) that must be done in order to bring the sphere to a total charge of Q = 143 µC.
A point charge with charge q1 = 2.00 µC is held stationary at the origin. A second
point charge with charge q2 = -4.90 µC moves from the point (0.170 mm, 0) to the
point (0.290 mm, 0.240 mm).
How much work is done by the electrostatic force on the moving point charge?
Express your answer in joules.
Chapter 25 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 25.1 - two points and are located within a region in...Ch. 25.2 - QUICK QUIZ 24.2 The labeled points in Figure 24.4...Ch. 25.3 - In Figure 24.8b, take q2, to be a negative source...Ch. 25.4 - In a certain region of space, the electric...Ch. 25 - Prob. 1OQCh. 25 - Prob. 2OQCh. 25 - Prob. 3OQCh. 25 - Prob. 4OQCh. 25 - Prob. 5OQCh. 25 - Prob. 6OQ
Ch. 25 - Prob. 7OQCh. 25 - Prob. 8OQCh. 25 - Prob. 9OQCh. 25 - Prob. 10OQCh. 25 - Prob. 11OQCh. 25 - Prob. 12OQCh. 25 - Prob. 13OQCh. 25 - Prob. 14OQCh. 25 - Prob. 15OQCh. 25 - Prob. 1CQCh. 25 - Prob. 2CQCh. 25 - When charged particles are separated by an...Ch. 25 - Prob. 4CQCh. 25 - Prob. 5CQCh. 25 - Prob. 6CQCh. 25 - Oppositely charged parallel plates are separated...Ch. 25 - Prob. 2PCh. 25 - Prob. 3PCh. 25 - How much work is done (by a battery, generator, or...Ch. 25 - Prob. 5PCh. 25 - Starting with the definition of work, prove that...Ch. 25 - Prob. 7PCh. 25 - (a) Find the electric potential difference Ve...Ch. 25 - Prob. 9PCh. 25 - Prob. 10PCh. 25 - Prob. 11PCh. 25 - Prob. 12PCh. 25 - Prob. 13PCh. 25 - Prob. 14PCh. 25 - Prob. 15PCh. 25 - Two point charges Q1 = +5.00 nC and Q2 = 3.00 nC...Ch. 25 - Prob. 17PCh. 25 - Prob. 18PCh. 25 - Given two particles with 2.00-C charges as shown...Ch. 25 - Prob. 20PCh. 25 - Four point charges each having charge Q are...Ch. 25 - Prob. 22PCh. 25 - Prob. 23PCh. 25 - Show that the amount of work required to assemble...Ch. 25 - Prob. 25PCh. 25 - Prob. 26PCh. 25 - Prob. 27PCh. 25 - Prob. 28PCh. 25 - Prob. 29PCh. 25 - Prob. 30PCh. 25 - Prob. 31PCh. 25 - Prob. 32PCh. 25 - How much work is required to assemble eight...Ch. 25 - Four identical particles, each having charge q and...Ch. 25 - Prob. 35PCh. 25 - Prob. 36PCh. 25 - Prob. 37PCh. 25 - Prob. 38PCh. 25 - Prob. 39PCh. 25 - Prob. 40PCh. 25 - Prob. 41PCh. 25 - Prob. 42PCh. 25 - Prob. 43PCh. 25 - Prob. 44PCh. 25 - Prob. 45PCh. 25 - Prob. 46PCh. 25 - Prob. 47PCh. 25 - The electric field magnitude on the surface of an...Ch. 25 - Prob. 49PCh. 25 - Prob. 50PCh. 25 - Prob. 51PCh. 25 - Prob. 52PCh. 25 - Prob. 53APCh. 25 - Prob. 54APCh. 25 - Prob. 55APCh. 25 - Prob. 56APCh. 25 - Prob. 57APCh. 25 - Prob. 58APCh. 25 - Prob. 59APCh. 25 - Prob. 60APCh. 25 - Prob. 61APCh. 25 - Prob. 62APCh. 25 - Prob. 63APCh. 25 - Prob. 64APCh. 25 - Prob. 65APCh. 25 - Prob. 66APCh. 25 - Prob. 67APCh. 25 - Prob. 68APCh. 25 - Review. Two parallel plates having charges of...Ch. 25 - When an uncharged conducting sphere of radius a is...Ch. 25 - Prob. 71CPCh. 25 - Prob. 72CPCh. 25 - Prob. 73CPCh. 25 - Prob. 74CPCh. 25 - Prob. 75CPCh. 25 - Prob. 76CPCh. 25 - Prob. 77CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A point charge of q=50108 C is placed at the center of an uncharged spherical conducting shell of inner radius 6.0 cm and outer radius 9.0 cm. Find the electric potential at (a) r = 4,0cm, (b) r = 8.0 cm, (c) r — 12.0 cm.arrow_forwardHow many electrons should be removed from an initially uncharged spherical conductor of radius 0.300 m to produce a potential of 7.50 kV at the surface?arrow_forwardA uniform electric field E = 3 000 V/m exists within a certain region. What volume of space contains an energy equal to 1.00 107 J? Express your answer in cubic meters and in liters.arrow_forward
- Identical point charges (+50 µC) are placed at the corners of a square with sides of 2.0-m length. How much external energy is required to bring a fifth identical charge from infinity to the geometric center of the square? Answer is 64J please explain how?arrow_forwardAn engineering intern has a spherical shell of radius R = 0.140 m and wishes to charge it by bringing in charges from a long distance away. Determine the amount of work (in J) that must be done in order to bring the sphere to a total charge of Q = 152 μC. Jarrow_forwardThree charges, q1=+q, q2 = +q, and q3 = -q, are located at the corners of an equilateral triangle with side length of d= 8 cm. The charge g = +9 µC. Calculate the work required to bring another charge +q from infinity to point Pmidpoint of q2 and q3. charge #2 + +9 charge #1 +9 d point P charge #3 Oa Zero Ob 30.30J Oc 10.52 O4 44.971arrow_forward
- A conducting sphere, of radius 0.400 m, has a net charge of 3.00 µC. a) Calculate the work required to bring a single proton in from infinity and add it to the sphere. Express your answer in electron volts. b) Calculate the total work required to charge the sphere to Q = 3.00 µC in the first place, starting with a neutral sphere, and bringing charges in one at a time from infinity. (Consider adding charge in infinitesimal increments dq, and the work dW for each increment.)arrow_forwardA lab assistant has a spherical shell of radius R = 0.153 m and wishes to charge it by bringing in charges from a long distance away. Determine the amount of work (in J) that must be done in order to bring the sphere to a total charge of Q = 119 µC.arrow_forwardFind the work that needs to be done to transfer a point charge q = 42 nC from a point located at a distance of a = 20 cm to a point located at a distance b = 5 cm from the center of a conducting ball with a radius of R = 10 cm with a surface charge density = 4.3 10-11 C / m2.arrow_forward
- Identical point charges (+50 µC) are placed at the corners of a square with sides of 2.0-m length. How much external energy is required to bring a fifth identical charge from infinity to the geometric center of the square?arrow_forwardTwo charges Q1=22µC and Q2=-25µC are placed on the corners of a right triangle with the sides a=13mm and b=25mm. How much work must be done to bring a third charge Q3=5µC from infinity to point P that is a distance c away from the empty corner as shown in the figure below. Express your answer in units of Joules using zero decimal places. Take Coulomb constant as k=9.0x109 N.m2/c2. Please do not forget the minus sign if your answer is negative. b2 Hint: If you use similar triangles c = Vą? + b² Q. P. а Q1 barrow_forwardAn infinite, nonconducting sheet has a surface charge density σ = +4.02 pc/m². (a) How much work is done by the electric field due to the sheet if a particle of charge qo = 8.01 × 10-19 C is moved from the sheet to a point P at distance d = 2.01 cm from the sheet? (b) If the electric potential Vis defined to be zero on the sheet, what is Vat P? (a) Number i 1.87E-1 Units J (b) Number i -1.17E-2 Units Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY