Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 24, Problem 1CQ
To determine
The best orientation of television antenna for excellent signal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two friends are playing with hand-held radio transceivers which have dipole antennas. If the antenna of the transmitting radio is vertical, and the antenna of the receiving radio is at an angle ? to the vertical, what is the received power as a percentage of the maximum possible received power at the receiving antenna in the following cases?
The wavelengths of AM radio waves are so long—more than 200 m—that it would be impractical to make a (1)/(4) wavelength antenna to detect their electric field. Instead, AM radios detect the magnetic field of the wave using a coil of wire. The changing flux of the wave’s magnetic field induces an emf in the coil that is detected and amplified by the receiver. If you are standing to the west of an AM station that is broadcasting a vertically polarized wave, in which direction should the axis of the coil be oriented in order to best detect the wave?
When an electric current flows through the filament of an incandescent light bulb, it gets very hot and glows (or incandesces). Consider a particular bulb with a filament with 140 Ω resistance which carries a current of 1.00 A. Assume the length of the filament is L = 9.00 cm long with a radius of r = 0.900 mm.
(a) Calculate the Poynting vector (in kW/m2) at the surface of the filament, associated with the static electric field producing the current and the current's static magnetic field.
magnitude: ? kW/m2
direction: Radially inward or outward?
(b) Find the magnitudes of the static electric field (in kV/m) and static magnetic field (in µT) at the surface of the filament.
electric field: ? kV/m
magnetic field: ? µT
Chapter 24 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 24.1 - Prob. 24.1QQCh. 24.4 - Prob. 24.2QQCh. 24.4 - Prob. 24.3QQCh. 24.4 - Prob. 24.4QQCh. 24.6 - Prob. 24.5QQCh. 24.6 - Prob. 24.6QQCh. 24.7 - Prob. 24.7QQCh. 24 - Prob. 1OQCh. 24 - Prob. 2OQCh. 24 - Prob. 3OQ
Ch. 24 - If plane polarized light is sent through two...Ch. 24 - Prob. 5OQCh. 24 - Prob. 6OQCh. 24 - Prob. 7OQCh. 24 - Prob. 9OQCh. 24 - Prob. 10OQCh. 24 - Prob. 11OQCh. 24 - Consider an electromagnetic wave traveling in the...Ch. 24 - Prob. 1CQCh. 24 - Prob. 2CQCh. 24 - Prob. 3CQCh. 24 - Prob. 4CQCh. 24 - Prob. 5CQCh. 24 - Prob. 6CQCh. 24 - Prob. 7CQCh. 24 - Prob. 8CQCh. 24 - Prob. 9CQCh. 24 - Prob. 10CQCh. 24 - Prob. 11CQCh. 24 - Prob. 12CQCh. 24 - Prob. 1PCh. 24 - Prob. 2PCh. 24 - Prob. 3PCh. 24 - A 1.05-H inductor is connected in series with a...Ch. 24 - Prob. 5PCh. 24 - Prob. 6PCh. 24 - Prob. 7PCh. 24 - An electron moves through a uniform electric field...Ch. 24 - Prob. 9PCh. 24 - Prob. 10PCh. 24 - Prob. 11PCh. 24 - Prob. 12PCh. 24 - Figure P24.13 shows a plane electromagnetic...Ch. 24 - Prob. 14PCh. 24 - Review. A microwave oven is powered by a...Ch. 24 - Prob. 16PCh. 24 - A physicist drives through a stop light. When he...Ch. 24 - Prob. 18PCh. 24 - Prob. 19PCh. 24 - A light source recedes from an observer with a...Ch. 24 - Prob. 21PCh. 24 - Prob. 22PCh. 24 - Prob. 23PCh. 24 - Prob. 24PCh. 24 - Prob. 25PCh. 24 - Prob. 26PCh. 24 - Prob. 27PCh. 24 - Prob. 28PCh. 24 - Prob. 29PCh. 24 - Prob. 30PCh. 24 - Prob. 31PCh. 24 - Prob. 32PCh. 24 - Prob. 33PCh. 24 - Prob. 34PCh. 24 - Prob. 35PCh. 24 - Prob. 36PCh. 24 - Prob. 37PCh. 24 - Prob. 38PCh. 24 - Prob. 39PCh. 24 - Prob. 40PCh. 24 - Prob. 41PCh. 24 - Prob. 42PCh. 24 - Prob. 43PCh. 24 - Prob. 44PCh. 24 - Prob. 45PCh. 24 - Prob. 46PCh. 24 - Prob. 47PCh. 24 - Prob. 48PCh. 24 - You use a sequence of ideal polarizing filters,...Ch. 24 - Prob. 50PCh. 24 - Prob. 51PCh. 24 - Figure P24.52 shows portions of the energy-level...Ch. 24 - Prob. 53PCh. 24 - Prob. 54PCh. 24 - Prob. 55PCh. 24 - Prob. 56PCh. 24 - Prob. 57PCh. 24 - Prob. 58PCh. 24 - Prob. 59PCh. 24 - Prob. 60PCh. 24 - Prob. 61PCh. 24 - Prob. 62PCh. 24 - A dish antenna having a diameter of 20.0 m...Ch. 24 - Prob. 65PCh. 24 - Prob. 66PCh. 24 - Prob. 67PCh. 24 - Prob. 68PCh. 24 - Prob. 69PCh. 24 - Prob. 70PCh. 24 - Prob. 71PCh. 24 - A microwave source produces pulses of 20.0-GHz...Ch. 24 - A linearly polarized microwave of wavelength 1.50...Ch. 24 - Prob. 74PCh. 24 - Prob. 75P
Knowledge Booster
Similar questions
- A 2.40–m–diameter university communications satellite dish receives TV signals that have a maximum electric field strength (for one channel) of 8.50 μV/m. If the orbiting satellite broadcasts uniformly over an area of 1.50×1013 m2 (a large fraction of North America), how much power does it radiate??arrow_forwardYour friend just bought a magnetic field sensor and convinced you to help him measure the magnetic field at a certain distance from your local radio station's antenna. The maximum magnetic field that you measure is 1.96·10-11 T and a quick Google search tells you that this particular station broadcasts at a frequency of 778 kHz. What is the maximum electric field in V/m of the emitted electromagnetic waves?arrow_forwardYour favorite radio program broadcasts 96.3 MHz. What is the wavelength corresponding to this broadcast? Theoretically, the antenna of your radio is half of the wavelength of the radio waves. How long should the antenna be for this frequency?arrow_forward
- A parabolic reflector focuses electromagnetic waves into a beam as shown in the figure. The electromagnetic radiation is pulsed, with a pulse frequency of 19.0 GHz, and the duration of each pulse is t = 1.00 ns. The face of the reflector has a radius of 3.00 cm, and the average power during each pulse is 29.0 kW. (Due to the nature of this problem, do not use rounded intermediate values in your calculations—including answers submitted in WebAssign.) (a) What is the wavelength (in cm) of these electromagnetic waves? (b) What is the total energy (in µJ) contained in each pulse? (c)Compute the average energy density (in mJ/m3) inside each pulse. (d)Determine the amplitude of the electric field (in kV/m) and magnetic field (in µT) in these electromagnetic waves. (e) Assuming that this pulsed beam strikes an absorbing surface, compute the force (in µN) exerted on the surface during the 1.00 ns duration of each pulse.arrow_forwardA parabolic reflector focuses electromagnetic waves into a beam as shown in the figure. The electromagnetic radiation is pulsed, with a pulse frequency of 19.0 GHz, and the duration of each pulse is t = 1.00 ns. The face of the reflector has a radius of 3.00 cm, and the average power during each pulse is 29.0 kW. (Due to the nature of this problem, do not use rounded intermediate values in your calculations—including answers submitted in WebAssign.) (d) Determine the amplitude of the electric field (in kV/m) and magnetic field (in µT) in these electromagnetic waves. Emax= kV/m Bmax = µT (e) Assuming that this pulsed beam strikes an absorbing surface, compute the force (in µN) exerted on the surface during the 1.00 ns duration of each pulse. µNarrow_forwardUse phasor-form Maxwell’s equations to solve the following problems:arrow_forward
- A parabolic reflector focuses electromagnetic waves into a beam as shown in the figure. The electromagnetic radiation is pulsed, with a pulse frequency of 11.0 GHz, and the duration of each pulse is t = 1.00 ns. The face of the reflector has a radius of 3.50 cm, and the average power during each pulse is 29.0 kW. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) D (a) What is the wavelength (in cm) of these electromagnetic waves? cm (b) What is the total energy (in μJ) contained in each pulse? µJ (c) Compute the average energy density (in m3/m³) inside each pulse. mJ/m³ (d) Determine the amplitude of the electric field (in kv/m) and magnetic field (in µT) in these electromagnetic waves. Emax = Bmax = kv/m PT (e) Assuming that this pulsed beam strikes an absorbing surface, compute the force (in µN) exerted on the surface during the 1.00 ns duration of each pulse. μNarrow_forwardA dish antenna having a diameter of 14.0 m receives (at normal incidence) a radio signal from a distant source as shown in the figure below. The radio signal is a continuous sinusoidal wave with amplitude Emax = 0.400 µV/m. Assume the antenna absorbs all the radiation that falls on the dish. (a) What is the amplitude of the magnetic field in this wave? T (b) What is the intensity of the radiation received by this antenna? W/m² (c) What is the power received by the antenna? W (d) What force is exerted by the radio waves on the antenna? Narrow_forwardPolarizers: Three polarizers with different axes of transmission will be placed in the path of an unpolarized laser beam with an intensity of 1000 W/m². The transmission axis of polarizer A is vertical (0°), that of B is rotated 35.5° clockwise with respect to vertical, and that of C is rotated 53.3° clockwise with respect to vertical. The polarizers can be placed in any order, but the second polarizer must be 522 mm from the first, and the third must be 229 mm from the second. (a) Find the arrangement of polarizers that maximizes the transmitted intensity and compute the maximum intensity. (b) Find the arrangement of polarizers that minimizes the transmitted intensity and compute the minimum intensity.arrow_forward
- If the satellite antenna now transmits a 35kW signal, what is the maximum value of the electric field in 10 − 3 V/C?arrow_forwardYou are a NASA mission specialist on your first flight aboard the space shuttle. Thanks to your extensive training in physics, you have been assigned to evaluate the performance of a new radio transmitter on board the International Space Station (ISS). Perched on the shuttle's moveable arm, you aim a sensitive detector at the ISS, which is a distance of 3.0 km away. You find that the electric-field amplitude of the radio waves coming from the ISS transmitter is 8.9×10−2 V/m and that the frequency of the waves is 201 MHz . Assume the radio transmitter radiates energy uniformly in all directions. I = 1.1*10^5 W/m^2 Bmax = 3*10^-10 T Find the total power output of the ISS radio transmitter.arrow_forwardA 2.75 m diameter university communications satellite dish receives TV signals that have a maximum electric field strength (for one channel) of 6.5 μV/m . Part (a) What is the intensity of this wave in W/m2? Part (b) What is the power received by the antenna in W? Part (c) If the orbiting satellite broadcasts uniformly over an area of 1.50 × 1013 m2 (a large fraction of North America), how much power does it radiate in W?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning