Statics and Mechanics of Materials
2nd Edition
ISBN: 9780073398167
Author: Ferdinand P. Beer, E. Russell Johnston Jr., John T. DeWolf, David Mazurek
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.3, Problem 51P
A 600 lb crate is supported by several rope-and-pulley arrangements as shown. Determine for each arrangement the tension in the rope. (Hint: The tension in the rope is the same on each side of a Simple pulley. This can be proved by the methods of Chap. 4.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
i need the answer quickly
3. Determine the tension in each wire
that support the 75-kg homogeneous
plate shown.
Show your complete and detailed solution.
Chapter 2 Solutions
Statics and Mechanics of Materials
Ch. 2.1 - 2.1 and 2.2 Determine graphically the magnitude...Ch. 2.1 - 2.1 and 2.2 Determine graphically the magnitude...Ch. 2.1 - Two structural members B and C are bolted to...Ch. 2.1 - Two structural members B and C are bolted to...Ch. 2.1 - The 300-lb force is to be resolved into components...Ch. 2.1 - The 300-lb force is to be resolved into components...Ch. 2.1 - A trolley that moves along a horizontal beam is...Ch. 2.1 - A disabled automobile is pulled by means of two...Ch. 2.1 - Two forces are applied as shown to a hook support....Ch. 2.1 - A disabled automobile is pulled by means of two...
Ch. 2.1 - A trolley that moves along a horizontal beam is...Ch. 2.1 - For the hook support shown, determine by...Ch. 2.1 - The cable stays AB and AD help support pole AC....Ch. 2.1 - Solve Prob. 2.4 by trigonometry.Ch. 2.1 - For the hook support of Prob. 2.9, determine by...Ch. 2.2 - 2.16 and 2.17 Determine the x and y components of...Ch. 2.2 - 2.16 and 2.17 Determine the x and y components of...Ch. 2.2 - 2.18 and 2.10 Determine the x and y components of...Ch. 2.2 - 2.18 and 2.19 Determine the x and y components of...Ch. 2.2 - Member BD exerts on member ABC a force P directed...Ch. 2.2 - Member BC exerts on member AC a force P directed...Ch. 2.2 - Cable AC exerts on beam AB a force P directed...Ch. 2.2 - The hydraulic cylinder BD exerts on member ABC a...Ch. 2.2 - Prob. 24PCh. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - For the collar loaded as shown, determine (a) the...Ch. 2.2 - Prob. 29PCh. 2.2 - A hoist trolley is subjected to the three forces...Ch. 2.2 - For the post loaded as shown, determine (a) the...Ch. 2.3 - Two cables are tied together at C and are loaded...Ch. 2.3 - 2.33 and 2.34 Two cables are tied together at C...Ch. 2.3 - Prob. 34PCh. 2.3 - Prob. 35PCh. 2.3 - Prob. 36PCh. 2.3 - Two forces of magnitude TA=8 kips and TB=15 kips...Ch. 2.3 - Prob. 38PCh. 2.3 - Prob. 39PCh. 2.3 - Two forces P and Q are applied as shown to an...Ch. 2.3 - Prob. 41PCh. 2.3 - A sailor is being rescued using a boatswains chair...Ch. 2.3 - For the cables of Prob. 2.32, find the value of a...Ch. 2.3 - Prob. 44PCh. 2.3 - Prob. 45PCh. 2.3 - Prob. 46PCh. 2.3 - Two cables tied together at C are loaded as shown....Ch. 2.3 - Collar A is connected as shown to a 50-1b load and...Ch. 2.3 - Cogar A is connected as shown to a 50-lb load and...Ch. 2.3 - A movable bin and its contents have a combined...Ch. 2.3 - A 600 lb crate is supported by several...Ch. 2.3 - Prob. 52PCh. 2.3 - A 200-kg crate is to be supported by the...Ch. 2.3 - Prob. 54PCh. 2.3 - Prob. 55PCh. 2.4 - Determine (a) the x, y, and z components of the...Ch. 2.4 - Determine (a) the x, y, and z components of the...Ch. 2.4 - The end of the coaxial cable AE is attached to the...Ch. 2.4 - The end of the coaxial cable AE is attached to the...Ch. 2.4 - A gun is aimed at a point A located 35 east of...Ch. 2.4 - Prob. 61PCh. 2.4 - Determine the magnitude and direction of the force...Ch. 2.4 - Prob. 63PCh. 2.4 - Prob. 64PCh. 2.4 - Prob. 65PCh. 2.4 - Prob. 66PCh. 2.4 - Prob. 67PCh. 2.4 - Prob. 68PCh. 2.4 - Prob. 69PCh. 2.4 - In order to move a wrecked truck, two cables are...Ch. 2.4 - In order to move a wrecked truck, two cables are...Ch. 2.4 - Prob. 72PCh. 2.4 - Prob. 73PCh. 2.4 - Knowing that the tension is 425 lb in cable AB and...Ch. 2.4 - Knowing that the tension is 510 lb in cable AB and...Ch. 2.4 - A frame ABC is supported in part by cable DBE that...Ch. 2.4 - For the plate of Prob. 2.68, determine the...Ch. 2.4 - The boom OA carries a load P and is supported by...Ch. 2.4 - For the boom and loading of Prob. 2.78, determine...Ch. 2.5 - A container is supported by three cables that are...Ch. 2.5 - A container is supported by three cables that are...Ch. 2.5 - A crate is supported by three cables as shown....Ch. 2.5 - A crate is supported by three cables as shown....Ch. 2.5 - A crate is supported by three cables as shown....Ch. 2.5 - A 1600-lb crate is supported by three cables as...Ch. 2.5 - Three wires are connected at point D, which is...Ch. 2.5 - Prob. 87PCh. 2.5 - A rectangular plate is supported by three cables...Ch. 2.5 - A rectangular plate is supported by three cables...Ch. 2.5 - Prob. 90PCh. 2.5 - Solve Prob. 2.90, assuming that a fiend is helping...Ch. 2.5 - Prob. 92PCh. 2.5 - Prob. 93PCh. 2.5 - Prob. 94PCh. 2.5 - Prob. 95PCh. 2.5 - Prob. 96PCh. 2.5 - Prob. 97PCh. 2.5 - Prob. 98PCh. 2.5 - Prob. 99PCh. 2.5 - Prob. 100PCh. 2.5 - Prob. 101PCh. 2.5 - Prob. 102PCh. 2.5 - Solve Prob. 2.102 assuming that y=275mm.Ch. 2 - Two structural members A and B are bolted to a...Ch. 2 - Determine the x and y components of each of the...Ch. 2 - The hydraulic cylinder BC exerts on member AB a...Ch. 2 - Prob. 107RPCh. 2 - Knowing that a=20, determine the tension (a) in...Ch. 2 - Prob. 109RPCh. 2 - Prob. 110RPCh. 2 - Prob. 111RPCh. 2 - Prob. 112RPCh. 2 - Prob. 113RPCh. 2 - A transmission tower is held by three guy wires...Ch. 2 - Prob. 115RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The press shown below is used to emboss a small metal plate at E. The press is composed of 3 members: handle ABC, link BD, and piston DE that are connected by pins at points A, B. and D. A vertical force of 250 N is applied at point C. Determine: (a) The vertical component of the force exerted on the plate at E and the reactions at pin A. (b) The mechanical advantage of the press. Draw all required FBD's and put units on your answers. A 200 mm 60° 19T 20° 400 mm 15⁰ C C Parrow_forwardI need the answer quicklyarrow_forwardThe given truss below is loaded vertically downward with 4KN and 8KN at points C and D, respectively, as shown. A model of the truss was made in a laboratory, and it was found out that the values of internal forces in members A- L, A-B, and B-K are as indicated in the table. If the vertical reactions at A and G are 6.667 KN and 5.333 KN respectively, complete the table and answer the succeeding questions. Approximate all answers up to three decimal places. How much is the percent error between the experimental and computational internal forces for Member A-B?" 8 kN 4 kN 3 m G K J I H. 12 m, 6 @ 2 m Member Experimental 13.533 14.680 Computational Percent Error A-L A-B B-K 0.012 O 1.53% O 1.49%arrow_forward
- The given truss below is loaded vertically downward with 4KN and 8KN at points C and D, respectively, as shown. A model of the truss was made in a laboratory, and it was found out that the values of internal forces in members A-L, A-B, and B-K are as indicated in the table. If the vertical reactions at A and G are 6.667 KN and 5.333 KN respectively, complete the table and answer the succeeding questions. Approximate all answers up to three decimal places. What is the computational internal force of Member B-K?" 8 kN 4 kN 3 m L K J H 12 m, 6 @ 2 m Member Experimental 13.533 14.680 0.012 Computational Percent Error A-L А-В В-К O 13.334kN O 15.781KN O 14.908KN AABarrow_forward(₁) the by rope and A 1000 kg crate is to be supported. Pulley arrangement. Determine the required magnitude of the tension (T) and the angle (2) 1000. Kayarrow_forwardThe blade of the bulldozer shown below is rigidly attached to a linkage consisting of the arm AB, which is controlled by the hydraulic cylinder BC. There is an identical linkage on the other side of the bulldozer. Applied loads shown are for both linkages and F = 656 kN. (a) Determine the magnitude of the pin reaction at A in kN. (b) Determine the magnitude of the pin reaction at B in kN. (c) Determine the magnitude of the pin reaction at C in kN.arrow_forward
- is being 6-66 The garage door ABCE shown in Fig. raised by a cable DE. The one-piece door is a homogeneous rectangular slab weighing 225 lb. Frictionless rollers B and Crun in tracks at each side of the door as shown. Determine the tension Tin the cable and the forces B and C on the fric- tionless rollers when d = 75 in. E 12 in. 12 in. 6 in. 30 in. B 48 in. 90 in. 100 in.arrow_forwardThe given truss below is loaded vertically downward with 4KN and 8KN at points Cand D, respectively, as shown. A model of the truss was made in a laboratory, and it was found out that the values of internal forces in members A-L, A-B, and B-K are as indicated in the table. If the vertical reactions at A and G are 6.667 KN and 5.333 KN respectively, complete the table and answer the succeeding questions. Approximate all answers up to three decimal places. What is the behavior of the internal reaction of Member A-L?" 8 kN 4 kN B 3 m K J 1 H 12 m, 6 @ 2 m O tension O compression O none of the choices ооarrow_forwardThe uniform 18kg Bar OA is held in the position shown by a smooth pin at O, and the cable AB which is in tension as shown. 1.5 m 60° B 1.2 m What is the angle between the force vector TAB and the position vector RoA, when the two vectors are placed tail to tail (Answer in degrees) Answer:arrow_forward
- A uniform beam ( weight 71 N, length 6m) is being supported by cable and a hinge on a wall. The cable is attached to the beam 4 m from the hinge. A 100 Newton sign hangs off the end of the beam. a. Determine the tension in the cable b. Determine the horizontal and vertical components of the force provided by the hingearrow_forwardSTATICS 1. Three bars, hinged at A and D and pinned at B and C as shown, form a four-link mechanism. Determine the value of P that will prevent motion. ( 60° В 45° 45 60" P 20 kN A. 2. Solve for resultant and compute the values of P and F. Assuming each side is 1' A B D 361 Ib 3. Determine the reactions at A, B, C, and D W = 200 kN W = 400 kN 1m 2 m 5.6 marrow_forwardC. 3. A trunk of mass M is on a ramp. A rope pulls on the trunk horizontally as shown but the trunk does not move. a. In the box provided, draw a labeled 'free body diagram" (FBD) showing all the forces acting on the trunk. All the forces in the diagram should have descriptive labels giving the name of the force, for example, "T or "F" for the tension. Do not label the weight as "g" - this is the acceleration due to gravity and is not a force. Label the weight as "F", "W", or "Mg". Newton's 3rd law says that all forces come in action-reaction pairs, i.e., if object A exerts a force on B, object B must exert the same force on A but in the opposite direction. Note that action-reaction pairs always must be the same type of force. b. What is the reaction force corresponding to the ramp pushing into the trunk? What type of force is it? What direction is the reaction force and what object does the reaction force act on? What is the reaction force (type, direction, and object) corresponding…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY