Astronomy
1st Edition
ISBN: 9781938168284
Author: Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 49E
What is the radius of the progenitor star that became SN 1987A? Its luminosity was 100,000 times that of the Sun, and it had a surface temperature of 16,000 K.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
This star has a mass of 3.3 MSun. What is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr.
One way to calculate the radius of a star is to use its luminosity and temperature and assume that the star radiates approximately like a blackbody. Astronomers have measured the characteristics of central stars of planetary nebulae and have found that a typical central star is 16 times as luminous and 20 times as hot (about 110,000 K) as the Sun. Find the radius in terms of the Sun’s. How does this radius compare with that of a typical white dwarf?
Betelgeuse is a nearby supergiant that will eventually explode into a supernova. Let's see
how awesome it would look. At peak brightness, the supernova will have a luminosity of
about 10 billion times the Sun. It is 600 light-years away. All stellar brightnesses are
compared with Vega, which has an intrinsic luminosity of about 60 times the Sun, a distance
of 25 light-years, an absolute magnitude of 0.6 and an apparent magnitude of 0 (by
definition).
a) At peak brightness, how many times brighter will Betelgeuse be than Vega?
b) Approximately what apparent magnitude does this correspond to?
c) The Sun is about -26.5 apparent magnitude. What fraction of the Sun's brightness will
Betelgeuse be?
Chapter 23 Solutions
Astronomy
Ch. 23 - How does a white dwarf differ from a neutron star?...Ch. 23 - Describe the evolution of a star with a mass like...Ch. 23 - Describe the evolution of a massive star (say, 20...Ch. 23 - How do the two types of supernovae discussed in...Ch. 23 - A star begins its life with a mass of 5 MSunbut...Ch. 23 - If the formation of a neutron star leads to a...Ch. 23 - How can the Crab Nebula shine with the energy of...Ch. 23 - How is a nova different from a type Ia supernova?...Ch. 23 - Apart from the masses, how are binary systems with...Ch. 23 - What observations from SN 1987A helped confirm...
Ch. 23 - Describe the evolution of a white dwarf over time,...Ch. 23 - Describe the evolution of a pulsar over time, in...Ch. 23 - How would a white dwarf that formed from a star...Ch. 23 - What do astronomers think are the causes of...Ch. 23 - How did astronomers finally solve the mystery of...Ch. 23 - Arrange the following stars in order of their...Ch. 23 - Would you expect to find any white dwarfs in the...Ch. 23 - Suppose no stars more massive than about 2 MSunhad...Ch. 23 - Would you be more likely to observe a type II...Ch. 23 - Astronomers believe there are something like 100...Ch. 23 - Would you expect to observe every supernova in our...Ch. 23 - The Large Magellanic Cloud has about one-tenth the...Ch. 23 - Look at the list of the nearest stars in Appendix...Ch. 23 - If most stars become white dwarfs at the ends of...Ch. 23 - If a 3 and 8 MSunstar formed together in a binary...Ch. 23 - You have discovered two star clusters. The first...Ch. 23 - A supernova remnant was recently discovered and...Ch. 23 - Based upon the evolution of stars, place the...Ch. 23 - What observations or types of telescopes would you...Ch. 23 - How would the spectra of a type II supernova be...Ch. 23 - The ring around SN 1987A (Figure 23.12) initially...Ch. 23 - What is the acceleration of gravity (g) at the...Ch. 23 - What is the escape velocity from the Sun? How much...Ch. 23 - What is the average density of the Sun? How does...Ch. 23 - Say that a particular white dwarf has the mass of...Ch. 23 - What is the escape velocity from the white dwarf...Ch. 23 - What is the average density of the white dwarf in...Ch. 23 - Now take a neutron star that has twice the mass of...Ch. 23 - What is the escape velocity from the neutron star...Ch. 23 - What is the average density of the neutron star in...Ch. 23 - One way to calculate the radius of a star is to...Ch. 23 - According to a model described in the text, a...Ch. 23 - Do the same calculations as in Exercise 23.42 but...Ch. 23 - If the Sun were replaced by a white dwarf with a...Ch. 23 - A supernova can eject material at a velocity of...Ch. 23 - A supernova remnant was observed in 2007 to be...Ch. 23 - The ring around SN 1987A (Figure 23.12) started...Ch. 23 - Before the star that became SN 1987A exploded, it...Ch. 23 - What is the radius of the progenitor star that...Ch. 23 - What is the acceleration of gravity at the surface...Ch. 23 - What was the escape velocity from the surface of...Ch. 23 - What was the average density of the star that...Ch. 23 - If the pulsar shown in Figure 23.16 is rotating...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. A ball is thrown directly upward with a velocity of +20 m/s. At the end of 4 s, its velocity will be closest...
College Physics (10th Edition)
What class of motion, natural or violent, did Aristotle attribute to motion of the Moon?
Conceptual Physics (12th Edition)
41. What is the free-fall acceleration at the surface of (a) Mars and (b) Jupiter?
College Physics: A Strategic Approach (4th Edition)
37.43 After being produced in a collision between elementary particles, a positive pion (?+) must travel down a...
University Physics (14th Edition)
When light is reflected at Brewster’s angle from a smooth surface, it Is 100’ polarized parallel to the surface...
University Physics Volume 3
For a solid, we also define the linear thermal expansion coefficient, a, as the fractional increase in length p...
An Introduction to Thermal Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A red giant star might have radius = 104 times the solar radius, and luminosity = 1730 times solar luminosity. Use the data given below to calculate the temperature at the surface of the red giant star. Data: solar radius R = 7 x 108 meters solar luminosity L = 4 x 1026 watts Stefan-Boltzmann constant a = 5.67 x 10-8 W m² K-4 (in K) A: 1226 OB: 1434 OC: 1678 OD: 1963 OE: 2297 OF: 2688 OG: 3145 OH: 3679arrow_forwardBetelgeuse is a nearby supergiant that will eventually explode into a supernova. At peak brightness, the supernova will have a luminosity of about 20 billion times the Sun. It is 600 lightyears away. All stellar brightnesses are compared with Vega, which has an intrinsic luminosity of about 60 times the sun, a distance of 25 lightyears away, an absolutely magnitude of 0.6 and an apparent magnitude of 0. a) At peak brightness, how many times brighter will betelgeuses be than Vega? b) Approximately what apparent magnitude does this correspond to? c) The sun is about -26.5 apparent magnitude. What fraction of the Sun'ss brightness will Betelgeuse be?arrow_forwardThe mass-luminosity relation describes the mathematical relationship between luminosity and mass for main sequence stars. It describes how a star with a mass of 4 M⊙ would have a luminosity of ______ L⊙. If a star has a radius 1/2 that of the Sun and a temperature 4 that of the Sun, how many times higher is the star's luminosity than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a radius 2 times larger than the Sun's and a luminosity 1/4th that of the Sun, how many times higher is the star's temperature than that of the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125) If a star has a surface temperature 2 times lower than the Sun's and a luminosity the same as the Sun, how many times larger is the star than the Sun? (If it is smaller by a factor of 8, you would write 0.125 because 1/8=0.125)arrow_forward
- For the PP chain 0.7% of the mass participating in nuclear fusion is liberated as energy which produces a star's luminosity. Assume that the core of a main sequence star consists of 10% of its total mass. Hence, estimate the lifetime of a star on the main sequence in terms of its luminosity L/L. Give your answer in years. You may use the observed mass-luminosity relation L x M³.5, where M is the star's total mass. Using typical values, calculate estimates for the main sequence lifetime of a KO star and a 05 star. Describe briefly why your estimate might be more accurate for K stars compared to O stars.arrow_forwardObservations show that stellar luminosity, L, and mass, M, are related by L x M3.5 for main sequence stars. Obtain an expression that relates the main sequence life time and the mass of a star. You should assume that the luminosity is constant throughout a star's main sequence life time, and that the amount of mass converted into energy by a star while it is on the main sequence is given by AM main sequence life time of a 20 Solar mass star given that the Sun is expected to spend 1010 years on the main sequence. Comment on the significance of your answer. fM, where f is a constant. Estimate thearrow_forward12: A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) Answer: 36.854 13:This star has a mass of 3.3 MSun. what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr. Please answer question 13 thank you.arrow_forward
- Using solar units, we find that a star has 4 times the luminosity of the Sun, a mass 1.25 times the mass of the Sun, and a surface temperature of 4090 K (take the Sun's surface temperature to be 5784 K for the sake of this problem). This means the star has a radius of.................... solar radii and is a .................... star (use the classification).arrow_forwardFor a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into helium per second? Use the formula that you derive to estimate the mass of hydrogen atoms that are converted into helium in the interior of the sun (LSun = 3.9 x 1026 W). (Note: the mass of a hydrogen atom is 1 mproton and the mass of a helium atom is 3.97 mproton. You need four hydrogen nuclei to form one helium nucleus.)arrow_forwardQuestion 32 Consider three Main Sequence stars, an O tar, an F star and a K star, each with an apparent magnitude of 2. Which star is the most luminous? They're all the same luminosity. The O star The F star The K star Question 33 Consider three Main Sequence stars, an O star, an F star and a K star, each with an apparent magnitude of 2. Which star appears the brightest in the night sky? The O star The F star O The K star O They all appear the same. Please answer botharrow_forward
- The apparent magnitude of a star is observed to vary between m = +0.4 and m = +0.1 because the star pulsates and hence continuously changes its radius and temperature. When at its peak brightness, the star’s radius has increased by a factor of two compared to its value at the mini- mum brightness. Determine the value of T+/T−, where T+ is the temperature when the star is at its peak brightness and T− is the temperature when the star is at it minimum brightness. Note: we expect T+/T− < 1 because the star’s temperature decreases as its radius increases.arrow_forwardConsider a star of mass M=10 solar masses, composed entirely of fully ionized 12C. Its core temperature is Tc=6E8 kelvin(compared to Tc=1.5E7 kelvin for the Sun). If the luminosity of the star is L=107 LSun, what is the effective surface temperature?arrow_forwardWhat is the free-fall time of a 10 MSun main-sequence star? O 100 hours O 10 hours O 1 hour O 0.1 hoursarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning