COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 35QAP
To determine
The ratio for light required for light to travel through 1000 m of air to the time required for light to travel through 1000 m of vacuum
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
•48 In Fig. 33-48a, a light ray in water is incident at angle 61 on a
boundary with an underlying material, into which some of the
light refracts. There are two choices of underlying material. For
each, the angle of refraction 6, versus the incident angle 6, is
given in Fig. 33-48b. The vertical axis scale is set by 6, = 90°.
%3D
Without calculation, determine whether the index of refraction of
(a) material 1 and (b) material 2 is greater or less than the index
of water (n = 1.33). What is the index of refraction of (c) material
1 and (d) material 2?
Ө,
в2.
Water
0°
45°
90°
(a)
(6)
Physics v
Q21
A convex lens made of glass, with
refractive index (), is placed in a
medium of refractive index . A parallel
beam of light entering the lens
diverges
converges
undergoes no refraction
comes out as a parallel beam by itself.
Physics
Example 5: A narrow light beam in vacuum contains light of two wavelengths, 480 nm and 700
nm. It strikes a flat piece of glass at an angle of incidence of 60.000°. The index of refraction of
the glass is 1.4830 at 480 nm and 1.4760 at 700 nm. Determine the angle between the two
wavelengths as the light travels in the glass.
Chapter 23 Solutions
COLLEGE PHYSICS
Ch. 23 - Prob. 1QAPCh. 23 - Prob. 2QAPCh. 23 - Prob. 3QAPCh. 23 - Prob. 4QAPCh. 23 - Prob. 5QAPCh. 23 - Prob. 6QAPCh. 23 - Prob. 7QAPCh. 23 - Prob. 8QAPCh. 23 - Prob. 9QAPCh. 23 - Prob. 10QAP
Ch. 23 - Prob. 11QAPCh. 23 - Prob. 12QAPCh. 23 - Prob. 13QAPCh. 23 - Prob. 14QAPCh. 23 - Prob. 15QAPCh. 23 - Prob. 16QAPCh. 23 - Prob. 17QAPCh. 23 - Prob. 18QAPCh. 23 - Prob. 19QAPCh. 23 - Prob. 20QAPCh. 23 - Prob. 21QAPCh. 23 - Prob. 22QAPCh. 23 - Prob. 23QAPCh. 23 - Prob. 24QAPCh. 23 - Prob. 25QAPCh. 23 - Prob. 26QAPCh. 23 - Prob. 27QAPCh. 23 - Prob. 28QAPCh. 23 - Prob. 29QAPCh. 23 - Prob. 30QAPCh. 23 - Prob. 31QAPCh. 23 - Prob. 32QAPCh. 23 - Prob. 33QAPCh. 23 - Prob. 34QAPCh. 23 - Prob. 35QAPCh. 23 - Prob. 36QAPCh. 23 - Prob. 37QAPCh. 23 - Prob. 38QAPCh. 23 - Prob. 39QAPCh. 23 - Prob. 40QAPCh. 23 - Prob. 41QAPCh. 23 - Prob. 42QAPCh. 23 - Prob. 43QAPCh. 23 - Prob. 44QAPCh. 23 - Prob. 45QAPCh. 23 - Prob. 46QAPCh. 23 - Prob. 47QAPCh. 23 - Prob. 48QAPCh. 23 - Prob. 49QAPCh. 23 - Prob. 50QAPCh. 23 - Prob. 51QAPCh. 23 - Prob. 52QAPCh. 23 - Prob. 53QAPCh. 23 - Prob. 54QAPCh. 23 - Prob. 55QAPCh. 23 - Prob. 56QAPCh. 23 - Prob. 57QAPCh. 23 - Prob. 58QAPCh. 23 - Prob. 59QAPCh. 23 - Prob. 60QAPCh. 23 - Prob. 61QAPCh. 23 - Prob. 62QAPCh. 23 - Prob. 63QAPCh. 23 - Prob. 64QAPCh. 23 - Prob. 65QAPCh. 23 - Prob. 66QAPCh. 23 - Prob. 67QAPCh. 23 - Prob. 68QAPCh. 23 - Prob. 69QAPCh. 23 - Prob. 70QAPCh. 23 - Prob. 71QAPCh. 23 - Prob. 72QAPCh. 23 - Prob. 73QAPCh. 23 - Prob. 74QAPCh. 23 - Prob. 75QAPCh. 23 - Prob. 76QAPCh. 23 - Prob. 77QAPCh. 23 - Prob. 78QAPCh. 23 - Prob. 79QAPCh. 23 - Prob. 80QAPCh. 23 - Prob. 81QAPCh. 23 - Prob. 82QAPCh. 23 - Prob. 83QAPCh. 23 - Prob. 84QAPCh. 23 - Prob. 85QAPCh. 23 - Prob. 86QAPCh. 23 - Prob. 87QAPCh. 23 - Prob. 88QAPCh. 23 - Prob. 89QAPCh. 23 - Prob. 90QAPCh. 23 - Prob. 91QAPCh. 23 - Prob. 92QAPCh. 23 - Prob. 93QAPCh. 23 - Prob. 94QAPCh. 23 - Prob. 95QAPCh. 23 - Prob. 96QAPCh. 23 - Prob. 97QAPCh. 23 - Prob. 98QAPCh. 23 - Prob. 99QAPCh. 23 - Prob. 100QAPCh. 23 - Prob. 101QAPCh. 23 - Prob. 102QAPCh. 23 - Prob. 103QAPCh. 23 - Prob. 104QAPCh. 23 - Prob. 105QAPCh. 23 - Prob. 106QAPCh. 23 - Prob. 107QAPCh. 23 - Prob. 108QAPCh. 23 - Prob. 109QAPCh. 23 - Prob. 110QAPCh. 23 - Prob. 111QAPCh. 23 - Prob. 112QAPCh. 23 - Prob. 113QAPCh. 23 - Prob. 114QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- This question is about refraction and total internal reflection. (a) Light travels from one optical medium to another. State the conditions necessary for total internal reflection to occur at the boundary between the two media. (b) Light is incident on a small scratch in the surface of an optical fibre of refractive index 1.5. The angle between a ray of incident light and the surface of the scratch is 68 as shown below. 68 optic fibre refractive index 1.5 (i) Calculate the angle of refraction of the ray at the surface of the scratch.arrow_forwardWe know that the index of refraction of materials can help identify those materials. A light beam is shined onto a surface a reflected ray and is found to be completely polarized when the angle of incidence is 53.5°.(a) What is the index of refraction of the reflecting material? (b) What is the angle of refraction if some light passes through the surface of the material?°arrow_forward33.37 • BIO Heart Sonogram. Physicians use high-frequency (f = 1–5 MHz) sound waves, called ultrasound, to image internal or- gans. The speed of these ultrasound waves is 1480 m/s in muscle and 344 m/s in air. We define the index of refraction of a material for sound waves to be the ratio of the speed of sound in air to the speed of sound in the material. Snell's law then applies to the refraction of sound waves. (a) At what angle from the normal does an ultrasound beam enter the heart if it leaves the lungs at an angle of 9.73° from the normal to the heart wall? (Assume that the speed of sound in the lungs is 344 m/s.) (b) What is the critical angle for sound waves in air incident on muscle?arrow_forward
- Establish the relevant theoretical model:- Write a first general equation giving the angle of refraction (r) as a function of the angle of incidence (i) on a rectangular piece of acrylic and the refractive index (n) of the acrylic.- Write down a second general equation giving the lateral deviation (d)of an incident beam as a function of the angle of incidence (i), the angle of refraction (r) and the thickness (e) of the rectangular piece of acrylic. Note that there are two ways of calculating &, which give two mathematically equivalent equations.Using the relationships you've just obtained, calculate the lateral deviation for the following fictitious situation: angle of incidence i = 45°, acrylic refractive index = 1.49 +- 0.01 and blade thickness e = 6.5 cm.arrow_forwardPlease help solve this question? Thank you!arrow_forwardA light beam containing red and violet wavelengths is incident on a slab of quartz at an angle of incidence of 57.10°. The index of refraction of quartz is 1.455 at 660 nm (red light), and its index of refraction is 1.468 at 410 nm (violet light). Find the dispersion of the slab, which is defined as the difference in the angles of refraction for the two wavelengths. °arrow_forward
- •45 When the rectangular metal tank in Fig. 33-46 is filled to the top with an unknown liquid, observer o- O, with eyes level with the top of the tank, can just see corner E. A ray that refracts toward O at the top surface of the liquid is shown. If D = 85.0 cm and L = 1.10 m, what -Normal to liquid surface is the index of refraction of the liquid? -L-arrow_forward14: A fisherman spots a fish underneath the water. It appears that the fish is d0 = 0.57 m under the water surface at an angle of θa = 64 degrees with respect to the normal to the surface of the water. The index of refraction of water is nw = 1.3 and the index of refraction of air is na = 1. (a) The perpendicular distance from the apparent position of the fish to the normal of the water surface shown in the figure is L. Express L in terms of tan θa and d0. (b) Solve for the numerical value of L, in meters. (c) Express the sine of the angle θw, in terms of θa, nw, and na. (d) Solve for the numerical value of θw in degrees. (e) Now assume that the real position of the fish is directly below the apparent position, as shown in the figure. Express the real depth of the fish, d, in terms of L and tanθw. (f) Solve for the numerical value of d, in meters.arrow_forwardhow to slove?arrow_forward
- Consider these indices of refraction: glass: 1.52, air: 1.0003, water: 1.333. Put these materials in order from the one in which the speed of light is fastest to the one in which it is slowest. The speed of light in water > the speed of light in air > the speed of light in glass. The speed of light in glass > the speed of light in water > the speed of light in air. The speed of light in air > the speed of light in water > the speed of light in glass. The speed of light in glass > the speed of light in air > the speed of light in water. What is the term for the minimum angle at which a light ray is reflected back into a material and cannot pass into the surrounding medium? critical angle 3. angle of refraction incident angle 4. angle of reflection What does c represent in the equation ? the critical angle 3. the speed of light in a vacuum the refractive index…arrow_forwardDetermine the minimum angle of incidence for light traveling in flint glass in order to undergo total internal reflection from glycerin. The indices of refraction respectively for flint glass and glycerin are 1.66 and 1.47. °arrow_forwardFrom inside an aquarium a ray of light is directed at the glass so the angle of incidence, in water, is 30o. (a) Determine the angle of refraction when the ray emerges from the glass into the air. (b) If the angle of incidence in the water is 52o at what angle will the rays emerge from the glass? (42o, no ray emerges)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY