Concept explainers
(i)
The comparison of the magnitude of electric forces exerted on the two particles.
(i)
Answer to Problem 1OQ
Option (c) They are equal.
Explanation of Solution
Write the equation for electric force.
Here,
Write the equation for the electric field on the free electron.
Here,
Write the equation for the electric field on the free proton.
Conclusion:
Substitute
Substitute
In an identical electric field, the magnitude of electric force exerted on a free electron, and on a free proton is equal.
The magnitude of electric force in free electron and free proton is equal as calculated above, therefore options (a), (b), (d) and (e) are incorrect.
Therefore, option (c) is correct.
(ii)
The comparison of magnitudes of their acceleration.
(ii)
Answer to Problem 1OQ
Option (b) It is thousands of times greater for the electron.
Explanation of Solution
Write the equation for acceleration.
Here,
Particle's acceleration is inversely proportional to the mass of the particle.
Acceleration of free electron is inversely proportional to the mass of the free electron.
Acceleration of free proton is inversely proportional to the mass of the free proton.
Conclusion:
Substitute
Substitute
Divide equation (V) and (VI).
Mass of free proton is thousand times greater than the mass of the free electron, so the acceleration of free electron will be thousand times greater than the acceleration for free proton, as shown in equation (V), (VI) and (VII).
The acceleration of free electron will be a thousand times greater than the acceleration for free proton, therefore options (a), (c), (d) and (e) are incorrect.
Therefore, option (b) is correct.
Want to see more full solutions like this?
Chapter 23 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- Look at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning