Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 15PQ
A charge of −36.3 nC is transferred to a neutral copper ball of radius 4.35 cm. The ball is not grounded. The excess electrons spread uniformly on the surface of the ball. What is the number density (number of electrons per unit surface area) of excess electrons on the surface of the ball?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Most workers in nanotechnology are actively monitored for excess static charge buildup. The human body acts like an insulator as one walks across a carpet, collecting −50 nC per step. What charge buildup will a worker in a manufacturing plant accumulate if she walks 21 steps?
charge buildup from 21 steps:
nC
How many electrons are present in that amount of charge?
electrons present:
If a delicate manufacturing process can be damaged by an electrical discharge greater than 1012 electrons, what is the maximum number of complete steps that any worker should be allowed to take before touching the components?
maximum number of steps:
Most workers in nanotechnology are actively monitored for excess static charge buildup. The human body acts like an insulator as one walks across a carpet, collecting −50 nC per step. What charge buildup will a worker in a manufacturing plant accumulate if she walks 17 steps?
Two spherical shells have a charge of q1 = 3 nC and q2 = 5 nC. The radius are r1 = 7.5 cm and r2 = 2.5 cm.
If the wire is connected between the two spheres:
What will be the amount of charge transfer between one of the spheres to the other (in nC)?
What will be the voltage where the charge flow stops for the two charges?
Chapter 23 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 23.2 - Initially a glass rod and a piece of silk are...Ch. 23.3 - a. In Figure 23.8, why are there three plus signs...Ch. 23.3 - When wool is rubbed against amber, the wool...Ch. 23.3 - Prob. 23.4CECh. 23.4 - The following scenarios involve a metal ball and a...Ch. 23.4 - Prob. 23.6CECh. 23 - What is the difference between a contact force and...Ch. 23 - Many textbooks claim Franklin decided that moving...Ch. 23 - An object has a charge of 35 nC. How many excess...Ch. 23 - As part of a demonstration, a physics professor...
Ch. 23 - A single coulomb represents a large amount of...Ch. 23 - A sphere has a net charge of 8.05 nC, and a...Ch. 23 - A glass rod is initially neutral. After it is...Ch. 23 - After an initially neutral glass rod is rubbed...Ch. 23 - A 50.0-g piece of aluminum has a net charge of...Ch. 23 - Prob. 10PQCh. 23 - A silk scarf is rubbed against glass, and a wool...Ch. 23 - CASE STUDY A person in Franklins time may have...Ch. 23 - Prob. 13PQCh. 23 - Prob. 14PQCh. 23 - A charge of 36.3 nC is transferred to a neutral...Ch. 23 - Prob. 16PQCh. 23 - Prob. 17PQCh. 23 - An electrophorus is a device developed more than...Ch. 23 - Prob. 19PQCh. 23 - An electroscope is a device used to measure the...Ch. 23 - Two particles with charges of +5.50 nC and 8.95 nC...Ch. 23 - Particle A has a charge of 34.5 nC, and particle B...Ch. 23 - Prob. 23PQCh. 23 - Prob. 24PQCh. 23 - Particle A has charge qA and particle B has charge...Ch. 23 - Two charged particles are placed along the y axis....Ch. 23 - A 1.75-nC charged particle located at the origin...Ch. 23 - A 1.75-nC charged particle located at the origin...Ch. 23 - Two particles with charges q1 and q2 are separated...Ch. 23 - An electron with charge e and mass m moves in a...Ch. 23 - Two electrons in adjacent atomic shells are...Ch. 23 - Two small, identical metal balls with charges 5.0...Ch. 23 - Two identical spheres each have a mass of 5.0 g...Ch. 23 - One end of a light spring with force constant k =...Ch. 23 - Two 25.0-g copper spheres are placed 75.0 cm...Ch. 23 - Three charged particles lie along a single line....Ch. 23 - Given the arrangement of charged particles shown...Ch. 23 - Given the arrangement of charged particles in...Ch. 23 - Given the arrangement of charged particles in...Ch. 23 - Three charged metal spheres are arrayed in the xy...Ch. 23 - Charges A, B, and C are arrayed along the y axis,...Ch. 23 - Three identical conducting spheres are fixed along...Ch. 23 - Charges A, B, and C are arranged in the xy plane...Ch. 23 - Prob. 44PQCh. 23 - A particle with charge q is located at the origin,...Ch. 23 - Figure P23.46 shows four identical conducting...Ch. 23 - Prob. 47PQCh. 23 - Two metal spheres of identical mass m = 4.00 g are...Ch. 23 - Figure P23.49 shows two identical small, charged...Ch. 23 - Two small spherical conductors are suspended from...Ch. 23 - Four equally charged particles with charge q are...Ch. 23 - Four charged particles q, q, q, and q are Fixed...Ch. 23 - A metal sphere with charge +8.00 nC is attached to...Ch. 23 - Prob. 54PQCh. 23 - Three small metallic spheres with identical mass m...Ch. 23 - How does a negatively charged rubber balloon stick...Ch. 23 - How many electrons are in a 1.00-g electrically...Ch. 23 - Prob. 58PQCh. 23 - Prob. 59PQCh. 23 - Prob. 60PQCh. 23 - Three charged particles are arranged in the xy...Ch. 23 - A We saw in Figure 23.16 that a neutral metal can...Ch. 23 - Prob. 63PQCh. 23 - A Figure P23.65 shows two identical conducting...Ch. 23 - Two helium-filled, spherical balloons, each with...Ch. 23 - Two small metallic spheres, each with a mass of...Ch. 23 - A Two positively charged spheres with charges 4e...Ch. 23 - Prob. 69PQCh. 23 - Three charged spheres are at rest in a plane as...Ch. 23 - Prob. 71PQCh. 23 - Three particles with charges of 1.0 C, 1.0 C, and...Ch. 23 - A Two positively charged particles, each with...Ch. 23 - Prob. 74PQCh. 23 - Eight small conducting spheres with identical...Ch. 23 - Prob. 76PQCh. 23 - Prob. 77PQCh. 23 - Prob. 78PQCh. 23 - Prob. 79PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A circular ring of charge with radius b has total charge q uniformly distributed around it. What is the magnitude of the electric field at the center of the ring? (a) 0 (b) keq/b2 (c) keq2/b2 (d) keq2/b (e) none of those answersarrow_forwardThe surfaces of a lipid bi-layer forming the membrane around a cell with a radius of 1.2 µm has a residual charge qr = 9x10-15 C on outside of the bi-layer, and the same amount of negative charge on the inside. What is the force in pN (×10-12 N) on a singly-charged positive ion (q =1.6 x10-19 C) located on the outer surface of this membrane? Hint: Use F = q E = q (o/e) with o = qr/A = qr/ (4Tt r²) and ɛ, = 8.85 x 10-12 F-m-1. Answer: 8.99180 Farrow_forwardA 3.0-mm-diameter copper ball is charged to 90 nC. What fraction of its electrons have been removed? The density of copper is 8900 kg/m3.arrow_forward
- A metal sphere of radius R=2.0 cm is suspended from the ceiling by an insulating rope. A point sphere with q=-3.OnC charge is fixed to the ground 3.0m below the center of the sphere. What could be the highest tensile force that can occur in the rope when the metal sphere begins to be charged with an electrical charge? (The electric field to ionize the air is 5x104 V/m.)arrow_forwardQuestion 1. Two conductive spheres have the radius R1 = 0.2 m and R2 = 0.1 m. The spheres have the charge ql = 6 nC and q2 = -4 nC and are located at a distance from each other that is much larger than the radius of the spheres. A conductive wire is inserted between them so that charge can travel from one sphere to the other. The wire is then removed. How is the charge now distributed on the two spheres?arrow_forwardE7P8arrow_forward
- A solid metallic sphere with a radius of rA - 5.00 cm is located inside a hollowed metallic sphere (radii B = 8.00 cm and rc = 12.0 cm); the spheres are concentric with each other and they are electrically insulated from each other. The inner sphere has a charge of-45.0 μC while the hollowed sphere has a charge of +80.0 μC.. What is the surface charge density on the outer surface (the one with rc = 12.0 cm)? To +691 μC/m² + 193 μC/m² -663 μC/m² +4427C/m² - 249 μC/m² Warrow_forwardTwo small insulating spheres with radius 5.00×10−2 mm are separated by a large center-to-center distance of 0.505 m . One sphere is negatively charged, with net charge -1.35 μC, and the other sphere is positively charged, with net charge 3.65 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 8.85×10−12 C^2/(N⋅m2) What is the direction of the electric field midway between the spheres? toward the positively charged sphere toward the negatively charged sphere upward perpendicular to the line connecting the centers of the spheres downward perpendicular to the line connecting the centers of the spheresarrow_forwardAn infinite wire (R = 0.05 c m) is charged to λ = 2.5 μ C / c m. An electron is knocked out of the wire. Right at the edge, the electron flies outward at 6 × 10 7 m / s. How far does it travel before it stops and returns?arrow_forward
- Two small insulating spheres with radius 3.00×10−2 m are separated by a large center-to-center distance of 0.545 m . One sphere is negatively charged, with net charge -1.40 μC , and the other sphere is positively charged, with net charge 4.20 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C^2/(N⋅m^2)arrow_forwardThe two spherical shell has a charge of q1=0.30nC and q2 = 0.5nC. The radius of r1=7.5cm and r2 = 2.5cm. What is the new votage value in volts, after the charge transfer is completed between the two spheres?arrow_forwardHydrogen fluoride is a polar molecule with a dipole moment of 1.86 D, where “D” is the non-SI unit “debye, D” . The dipole moment points from the fluoride atom to the hydrogen atom, indicating the fluoride is the negative side of the dipole and hydrogen is positive. The atoms are separated by a distance of 91.7 pm. What is the average charge of the fluoride atom? If a single hydrogen fluoride molecule is fixed vertically, what would the electric field be along the x-axis 5 nm away? Express the electric field as a vector.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY