Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 5P
(a)
To determine
The direction of electron near the Earth's equator if its velocity is directed downwards.
(b)
To determine
The direction of electron near the Earth' if its velocity is directed northwards.
(c)
To determine
The direction of electron near the Earth's equator if its velocity is directed towards westward.
(d)
To determine
The direction of electron near the Earth's equator if its velocity is directed south-eastwards.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider an electron near the Earth's equator. In which direction does it tend to deflect if its velocity is (a) directed downward? (b) directed northward? (c) directed westward? (d) Directed southeastward?
The answers are a) west b) zero deflection c) up d) down. Can you explain
Consider an electron near the Earth’s equator. In which direction does it tend to deflect if its velocity is (a) directed downward? (b) Directed northward? (c) Directed westward? (d) Directed south eastward?
If a proton and an electron are released when they are 2.0 * 10^-10 m apart (a typical atomic distance), find the initial acceleration of each particle.
Chapter 22 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 22.2 - An electron moves in the plane of this paper...Ch. 22.3 - A charged particle is moving perpendicular to a...Ch. 22.5 - A wire carries current in the plane of this paper...Ch. 22.7 - Consider the magnetic field due to the current in...Ch. 22.8 - Prob. 22.5QQCh. 22.9 - Figure 22.30 (Quick Quiz 22.6) Four closed paths...Ch. 22.9 - Prob. 22.7QQCh. 22.10 - Consider a solenoid that is very long compared...Ch. 22 - Prob. 1OQCh. 22 - What creates a magnetic field? More than one...
Ch. 22 - A charged particle is traveling through a uniform...Ch. 22 - A proton moving horizontally enters a region where...Ch. 22 - Two long, parallel wires each carry the same...Ch. 22 - Two long, straight wires cross each other at a...Ch. 22 - Prob. 7OQCh. 22 - Prob. 8OQCh. 22 - Answer each question yes or no. (a) Is it possible...Ch. 22 - A long, straight wire carries a current I (Fig....Ch. 22 - A thin copper rod 1.00 m long has a mass of 50.0...Ch. 22 - A magnetic field exerts a torque on each of the...Ch. 22 - Two long, parallel wires carry currents of 20.0 A...Ch. 22 - Prob. 14OQCh. 22 - A long solenoid with closely spaced turns carries...Ch. 22 - Solenoid A has length L and N turns, solenoid B...Ch. 22 - Prob. 1CQCh. 22 - Prob. 2CQCh. 22 - Prob. 3CQCh. 22 - Prob. 4CQCh. 22 - Prob. 5CQCh. 22 - Prob. 6CQCh. 22 - Prob. 7CQCh. 22 - Imagine you have a compass whose needle can rotate...Ch. 22 - Prob. 9CQCh. 22 - Can a constant magnetic field set into motion an...Ch. 22 - Prob. 11CQCh. 22 - Prob. 12CQCh. 22 - Prob. 13CQCh. 22 - Prob. 14CQCh. 22 - A proton travels with a speed of 3.00 106 m/s at...Ch. 22 - Determine the initial direction of the deflection...Ch. 22 - An electron is accelerated through 2.40 103 V...Ch. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - Review. An electron moves in a circular path...Ch. 22 - A cosmic-ray proton in interstellar space has an...Ch. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Consider the mass spectrometer shown schematically...Ch. 22 - Prob. 16PCh. 22 - The picture tube in an old black-and-white...Ch. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - In Figure P22.20, the cube is 40.0 cm on each...Ch. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - A wire 2.80 m in length carries a current of 5.00...Ch. 22 - A current loop with magnetic dipole moment is...Ch. 22 - A rectangular coil consists of N = 100 closely...Ch. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Calculate the magnitude of the magnetic field at a...Ch. 22 - An infinitely long wire carrying a current I is...Ch. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - One long wire carries current 30.0 A to the left...Ch. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - 3. In Niels Bohr’s 1913 model of the hydrogen...Ch. 22 - Review. In studies of the possibility of migrating...Ch. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - In Figure P22.43, the current in the long,...Ch. 22 - Prob. 44PCh. 22 - Prob. 45PCh. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - A packed bundle of 100 long, straight, insulated...Ch. 22 - Prob. 49PCh. 22 - Prob. 50PCh. 22 - Prob. 51PCh. 22 - Prob. 52PCh. 22 - A long, straight wire lies on a horizontal table...Ch. 22 - Prob. 54PCh. 22 - A single-turn square loop of wire, 2.00 cm on each...Ch. 22 - Prob. 56PCh. 22 - A long solenoid that has 1 000 turns uniformly...Ch. 22 - A solenoid 10.0 cm in diameter and 75.0 cm long is...Ch. 22 - Prob. 59PCh. 22 - In Niels Bohr’s 1913 model of the hydrogen atom,...Ch. 22 - Prob. 61PCh. 22 - Prob. 62PCh. 22 - Prob. 63PCh. 22 - Prob. 64PCh. 22 - Prob. 65PCh. 22 - The Hall effect finds important application in the...Ch. 22 - Prob. 67PCh. 22 - Prob. 68PCh. 22 - Prob. 69PCh. 22 - Prob. 70PCh. 22 - Assume the region to the right of a certain plane...Ch. 22 - Prob. 72PCh. 22 - Prob. 73PCh. 22 - Prob. 74PCh. 22 - Prob. 75PCh. 22 - Review. Rail guns have been suggested for...Ch. 22 - Prob. 77PCh. 22 - Prob. 78PCh. 22 - Prob. 79PCh. 22 - Prob. 80PCh. 22 - Prob. 81P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A uniformly charged ring of radius R = 25.0 cm carrying a total charge of 15.0 C is placed at the origin and oriented in the yz plane (Fig. P24.54). A 2.00-g particle with charge q = 1.25 C, initially at the origin, is nudged a small distance x along the x axis and released from rest. The particle is confined to move only in the x direction. a. Show that the particle executes simple harmonic motion about the origin. b. What is the frequency of oscillation for the particle? Figure P24.54arrow_forwardA proton (m=1.67 x 10^-27 kg) travels a distance of 4.3 cm parallel to a uniform electric field 3.5 x 10^5 V/m between the plates shown in the figure. If the initial velocity is 3.2 x 10^5 m/s, find the magnitude of its final velocity in m/s. (Ignore gravity)arrow_forwardAn evacuated tube uses an accelerating voltage of 69 kV to accelerate electrons to hit a copper plate and produce X-rays. Non-relativistically, what would be the maximum speed (in m/s) of these electrons?arrow_forward
- Two plates are horizontal and are separated by 1.0 cm and are connected to a 100 volt battery with magnitude ? =1.00× 10 4 ? / ? . Suppose the direction of E is vertically upward. (b) What speed and kinetic energy does the electron acquire while traveling 1.0 cm to the lower plate?arrow_forward(a) What voltage will accelerate electrons to a speed of 6.00 x 106 m/s? (b) Find the radius of curvature of the path of a proton accelerated through this potential in a 0.500-T field and compare this with the radius of curvature of an electron accelerated through the same potential.arrow_forwardA proton is located at the origin, and a second proton is located on the x-axis at x1 = 6.22 fm (1 fm = 10−15 m). (a) Calculate the electric potential energy associated with this configuration. J (b) An alpha particle (charge = 2e, mass = 6.64 ✕ 10−27 kg) is now placed at (x2, y2) = (3.11, 3.11) fm. Calculate the electric potential energy associated with this configuration. J (c) Starting with the three particle system, find the change in electric potential energy if the alpha particle is allowed to escape to infinity while the two protons remain fixed in place. (Throughout, neglect any radiation effects.) J (d) Use conservation of energy to calculate the speed of the alpha particle at infinity. m/s (e) If the two protons are released from rest and the alpha particle remains fixed, calculate the speed of the protons at infinity. m/sarrow_forward
- In an evacuated tube electrons produce X-rays by accelerating from rest through a voltage of 0.42 kV and striking a copper plate. Nonrelativistically, what would be the maximum speed of these electrons, in meters per second?arrow_forwardprovides some pertinent background for this problem. Suppose a single electron orbits about a nucleus containing two protons (+2e), as would be the case for a helium atom from which one of the naturally occurring electrons is removed. The radius of the orbit is 3.09 × 10-11 m. Determine the magnitude of the electron's centripetal acceleration.arrow_forwardAlpha particles which have a charge +2e and mass 6.64 ✕ 10−27 kg are initially at rest and are fired directly at a stationary lead nucleus (charge +82e) at a speed of 1.05 ✕ 107 m/s. Determine the distance of closest approach (in fm) before the alpha particle reverses direction. Assume the lead nucleus remains stationary. Assume the alpha particles are initially very far from a stationary lead nucleus.arrow_forward
- If electrons have kinetic energy of 2000 eV, find (a) their speed, (b) the time needed to traverse a distance of 5 cm between plates that our horizontal, and (c) the vertical component of their velocity after passing between the plates if the electric field is 3.33 x 10^3 V/m.arrow_forwardA proton is located at the origin, and a second proton is located on the x-axis at x1 = 5.20 fm (1 fm = 10−15 m). (a) Calculate the electric potential energy associated with this configuration. J(b) An alpha particle (charge = 2e, mass = 6.64 ✕ 10−27 kg) is now placed at (x2, y2) = (2.60, 2.60) fm. Calculate the electric potential energy associated with this configuration.J(c) Starting with the three-particle system, find the change in electric potential energy if the alpha particle is allowed to escape to infinity while the two protons remain fixed in place. (Throughout, neglect any radiation effects.) J(d) Use conservation of energy to calculate the speed of the alpha particle at infinity. m/s(e) If the two protons are released from rest and the alpha particle remains fixed, calculate the speed of the protons at infinity. m/sarrow_forwardTwo identical charged objects are moving toward each other. When they are a distance = d = 1.8 m apart, each has speed to and charge Q 10 μC. (Ignore gravity.) 1 m/s. The objects each have mass m = 1 kg Q Vo d Vo Q (a) What is the total energy in the system? (b) How close together do the objects get?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY