Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 24P
A current loop with magnetic dipole moment
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A conducting rod is free to move along 2 parallel conducting rails. On one end a resistor, R, connects the two rails which forms a circuit. The rails are oriented along the y axis of a coordinate system. There is a constant magnetic B aligned with the z axis making it perpendicular to the plane of the rails and rod. If the rod is given an initial velocity of vo, and hence a kinetic energy of m*vo2 /2, mathematically demonstrate that as the rod rounds to a stop in an infinite time the power lost in the resistor as heat is equal to the initial kinetic energy.
An externally applied uniform magnetic field B induces a uniform magnetization inside a sphere of radius r and permeability μ. Find the magnetic moment m of the sphere.
A positron with a kinetic energy of 2.10 keV is projected into a uniform magnetic field of magnitude 0.140 T, with its velocity vector making an angle of 87.0° with the field. Find (a) the period, (b) the pitch p, and (c) the radius r of its helical path.
please highlight each answer when answering:
answer (a) with unit
answer (b) with unit
answer (c) with unit
Chapter 22 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 22.2 - An electron moves in the plane of this paper...Ch. 22.3 - A charged particle is moving perpendicular to a...Ch. 22.5 - A wire carries current in the plane of this paper...Ch. 22.7 - Consider the magnetic field due to the current in...Ch. 22.8 - Prob. 22.5QQCh. 22.9 - Figure 22.30 (Quick Quiz 22.6) Four closed paths...Ch. 22.9 - Prob. 22.7QQCh. 22.10 - Consider a solenoid that is very long compared...Ch. 22 - Prob. 1OQCh. 22 - What creates a magnetic field? More than one...
Ch. 22 - A charged particle is traveling through a uniform...Ch. 22 - A proton moving horizontally enters a region where...Ch. 22 - Two long, parallel wires each carry the same...Ch. 22 - Two long, straight wires cross each other at a...Ch. 22 - Prob. 7OQCh. 22 - Prob. 8OQCh. 22 - Answer each question yes or no. (a) Is it possible...Ch. 22 - A long, straight wire carries a current I (Fig....Ch. 22 - A thin copper rod 1.00 m long has a mass of 50.0...Ch. 22 - A magnetic field exerts a torque on each of the...Ch. 22 - Two long, parallel wires carry currents of 20.0 A...Ch. 22 - Prob. 14OQCh. 22 - A long solenoid with closely spaced turns carries...Ch. 22 - Solenoid A has length L and N turns, solenoid B...Ch. 22 - Prob. 1CQCh. 22 - Prob. 2CQCh. 22 - Prob. 3CQCh. 22 - Prob. 4CQCh. 22 - Prob. 5CQCh. 22 - Prob. 6CQCh. 22 - Prob. 7CQCh. 22 - Imagine you have a compass whose needle can rotate...Ch. 22 - Prob. 9CQCh. 22 - Can a constant magnetic field set into motion an...Ch. 22 - Prob. 11CQCh. 22 - Prob. 12CQCh. 22 - Prob. 13CQCh. 22 - Prob. 14CQCh. 22 - A proton travels with a speed of 3.00 106 m/s at...Ch. 22 - Determine the initial direction of the deflection...Ch. 22 - An electron is accelerated through 2.40 103 V...Ch. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - Review. An electron moves in a circular path...Ch. 22 - A cosmic-ray proton in interstellar space has an...Ch. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Consider the mass spectrometer shown schematically...Ch. 22 - Prob. 16PCh. 22 - The picture tube in an old black-and-white...Ch. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - In Figure P22.20, the cube is 40.0 cm on each...Ch. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - A wire 2.80 m in length carries a current of 5.00...Ch. 22 - A current loop with magnetic dipole moment is...Ch. 22 - A rectangular coil consists of N = 100 closely...Ch. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - Calculate the magnitude of the magnetic field at a...Ch. 22 - An infinitely long wire carrying a current I is...Ch. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - One long wire carries current 30.0 A to the left...Ch. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - 3. In Niels Bohr’s 1913 model of the hydrogen...Ch. 22 - Review. In studies of the possibility of migrating...Ch. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - In Figure P22.43, the current in the long,...Ch. 22 - Prob. 44PCh. 22 - Prob. 45PCh. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - A packed bundle of 100 long, straight, insulated...Ch. 22 - Prob. 49PCh. 22 - Prob. 50PCh. 22 - Prob. 51PCh. 22 - Prob. 52PCh. 22 - A long, straight wire lies on a horizontal table...Ch. 22 - Prob. 54PCh. 22 - A single-turn square loop of wire, 2.00 cm on each...Ch. 22 - Prob. 56PCh. 22 - A long solenoid that has 1 000 turns uniformly...Ch. 22 - A solenoid 10.0 cm in diameter and 75.0 cm long is...Ch. 22 - Prob. 59PCh. 22 - In Niels Bohr’s 1913 model of the hydrogen atom,...Ch. 22 - Prob. 61PCh. 22 - Prob. 62PCh. 22 - Prob. 63PCh. 22 - Prob. 64PCh. 22 - Prob. 65PCh. 22 - The Hall effect finds important application in the...Ch. 22 - Prob. 67PCh. 22 - Prob. 68PCh. 22 - Prob. 69PCh. 22 - Prob. 70PCh. 22 - Assume the region to the right of a certain plane...Ch. 22 - Prob. 72PCh. 22 - Prob. 73PCh. 22 - Prob. 74PCh. 22 - Prob. 75PCh. 22 - Review. Rail guns have been suggested for...Ch. 22 - Prob. 77PCh. 22 - Prob. 78PCh. 22 - Prob. 79PCh. 22 - Prob. 80PCh. 22 - Prob. 81P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Niels Bohr’s 1913 model of the hydrogen atom, the single electron is in a circular orbit of radius 5.29 × 10−11 m and its speed is 2.19 × 106 m/s. (a) What is the magnitude of the magnetic moment due to the electron’s motion? (b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of this magnetic moment vector?arrow_forwardA positron with kinetic energy 2.00 keV is projected into a uniform magnetic field of magnitude 0.100 T, with its velocity vector making an angle of 89.0° with . Find (a) the period, (b) the pitch p, and (c) the radius r of its helical path.arrow_forwardA positron with kinetic energy 1.80 keV is projected into a uniform magnetic field of magnitude 0.140 T, with its velocity vector making an angle of 88.0° with the field. Find (a) the period, (b) the pitch p, and (c) the radius r of its helical path.arrow_forward
- The magnetic field B due to a small current loop (which is placed at the origin) is called a magnetic dipole. Let p = (x² + y² + z²)¹/² For p large, B = curl(A), where A = (-33, -3,0) R Current loop (a) Let C be a horizontal circle of radius R with center (0, 0, c), and parameterization c(t) where c is large. Which of the following correctly explains why A is tangent to C? A(c(t)) = So, A(c(t)) = A(c(t)) -(-² A(c(t)) = = A(c(t)) cos(0,0) p3 (1). Therefore, A is parallel to c'(t) and tangent to C. Rcos(t) R sin(t) = (-OS R sin(t) R cos(1) p³ So, A(c(1)) = -c'(1). Therefore, A is parallel to c'(t) and tangent to C. O BdS = = and c'(t)= (-R sin(t), R cos(t), 0) Rin(1,0) and c'(t) = (R cos(1), -R sin(1), 0) So, A(c(t)) c(t) = 0. Therefore, A is perpendicular to c'(t) and tangent to C. O R sin(1) R cos(1) (R$ R COS(0,0) and c'(t) = (R cos(t), - R sin(t), 0) R cos(1) p3 So, A(c(t)) - c'(t) = 0. Therefore, A is perpendicular to c' (t) and tangent to C. R sin(t) - and c'(t)= (-R sin(t), R…arrow_forwardA magnetic field B is confined to a region r a ≤ and points out of the paper (the z-axis), r = 0 being the centre of the circular region. A charged ring (charge = Q) of radius b, b > a and mass m lies in the x-y plane with its centre at the origin. The ring is free to rotate and is at rest. The magnetic field is brought to zero in time ∆t. Find the angular velocity ω of the ring after the field vanishes.arrow_forwardTo understand why charged particles move in circles perpendicular to a magnetic field and why the frequency is invariant. A particle of charge q and mass m moves in a region of space where there is a uniform magnetic field B=B0k (ie a magnetic field of magnitude B0 in the +z direction) in this problme neglect any forces on the particle other than the magnetic force. (A) if the resulting trajectory of the charged particle is a circle, what was the angular frequency of the circular motion? Express angular frequency in terms of q,m, and B0.arrow_forward
- In Fig. 2, an electron with an initial kinetic energy of 5.0 keV enters region 1 at time t= 0. That region contains a uniform magnetic field directed into the page, with magnitude 0.010 T. The electron goes through a half circle and then exits region 1, headed toward region 2 across a gap of 25.0 cm. There is an electric potential diference AV= 2000 V across the gap, with a polarity such that the electron's speed increases uniformly as it traverses the gap. Region 2 contains a uniform magnetic field directed out of the page, with magnitude 0.020 T. The elctron goes through a half circle and then leaves region 2. At what time t does it leave? (e= 1.6 × 10-19 C, mẹ = 9.11 × 10-3' kg) Region 1 I av AV Region 2 O B2 Fig. 2arrow_forwardA particle of mass m = 1.5 x 10-16 kg and charge q = 2.3 × 10-16 C first accelarates under a potential difference of V = 103 V then enters a uniform magnetic field of a magnetic field vector directed vertically to the path of the particle. It is observed that the particle comes out of the uniform B field region in the reverse direction with a trajectory paralell to the original path which is shifted by Ax as seen in the figure below. It is measured that the particle spends 2.5 × 10-3 s in the magnetic field region. (a) What is the shift Ax for the trajectory? (b) What is the magnitude and direction of the magnetic field? (c) Now a second charged particle of unkown mass and charge Q = 8.5 x 10-15 C enters the same magnetic field region under the same accelerating potential. It is then observed that the radius of the trajectory of the particle in the magnetic field region is 3 x 10-² m. What is the mass of the particle? uniformm B field regian (d) Finally, a third particle of the same…arrow_forwardA proton moving at speed v = 1.00 x 106 m/s enters a region in space where a magnetic fi eld givenby B = (–0.500 T) z exists. The velocity vector of the proton is at an angle θ = 60.0° with respect tothe positive z-axis. a) Analyze the motion of the proton and describe its trajectory (in qualitativeterms only). b) Calculate the radius, r, of the trajectory projected onto a plane perpendicular to themagnetic fi eld (in the xy-plane). c) Calculate the period, T, and frequency, f, of the motion in thatplane. d) Calculate the pitch of the motion (the distance traveled by the proton in the direction ofthe magnetic fi eld in 1 period).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY