Concept explainers
** There is a light pole on one bank of a small pond. You are standing up while fishing on the other bank. After reflection from the surface of the water, part of the light from the bulb at the top of the pole reaches your eyes. Use a ray diagram to help find a point on the surface of the water from where the reflected ray reaches your eyes. Determine an expression for the distance from this point on the water to the bottom of the light pole if the height of the pole is H, your height is h. and the distance between you and the light pole is l.
Want to see the full answer?
Check out a sample textbook solutionChapter 22 Solutions
College Physics
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Life in the Universe (4th Edition)
An Introduction to Thermal Physics
College Physics: A Strategic Approach (3rd Edition)
University Physics (14th Edition)
University Physics with Modern Physics (14th Edition)
- Unreasonable results Light traveling from water to a gemstone strikes the surface at an angle of 80.00 and has an angle of refraction of 15.2°. (a) What is the speed of light in the gemstone? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardA light ray travels from vacuum into a slab of material with index of refraction n1 at incident angle θ with respect to the surface. It subsequently passes into a second slab of material with index of refraction n2 before passing back into vacuum again. The surfaces of the different materials are all parallel to one another. As the light exits the second slab, what can be said of the final angle ϕ that the outgoing light makes with the normal? (a) ϕ > θ (b) ϕ < θ (c) ϕ = θ (d) The angle depends on the magnitudes of n1 and n2. (e) The angle depends on the wavelength of the light.arrow_forwardUnpolarized light in vacuum is incident onto a sheet of glass with index of refraction n. The reflected and refracted rays are perpendicular to each other. Find the angle of incidence. This angle is called Brewsters angle or the polarizing angle. In this situation, the reflected light is linearly polarized, with its electric field restricted to be perpendicular to the plane containing the rays and the normal.arrow_forward
- Unreasonable results Suppose light travels from water to another substance, with an angle of incidence of 10.0and an angle of refraction of 14.9 . (a) What is the index of refraction of the other substance? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardThe index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardLight in medium A undergoes a total internal reflection as it reaches the interface with medium B. Which of the following statements must be true (choose all that apply)? (a) nB nA (b) nB nA (c) All light rays that undergo a total internal reflection travel along the interface between the two materials. (d) Light traveling in the opposite direction, from B into A, cannot undergo a total internal reflection.arrow_forward
- A Fermats principle of least time for refraction. A ray of light traveling in a medium with speed v1 leaves point A and strikes the boundary between the incident and transmitted media a horizontal distance x from point A as shown in Figure P38.98. The refracted ray travels with speed v2 in the second medium, eventually reaching point B. The horizontal distance between points A and B is L. a. Calculate the time t required for the light to travel from A to B in terms of the parameters labeled in the figure. b. Now take the derivative of t with respect to x. What is the condition for which the ray of light will take the shortest time to travel from A to B? Figure P38.98arrow_forwardPierre de Fermat (16011665) showed that whenever light travels from one point to another, its actual path is the path that requires the smallest time interval. This statement is known as Fermats principle. The simplest example is for light propagating in a homogeneous medium. It moves in a straight line because a straight line is the shortest distance between two points. Derive Snells law of refraction from Fermats principle. Proceed as follows. In Figure P34.54, a light ray travels from point P in medium 1 to point Q in medium 2. The two points are, respectively, at perpendicular distances a and b from the interface. The displacement from P to Q has the component d parallel to the interface, and we let x represent the coordinate of the point where the ray enters the second medium. Let t = 0 be the instant the light starts from P. (a) Show that the time at which the light arrives at Q is t=r1v1+r2v2=n1a2+x2c+n2b2+(dx)2c (b) To obtain the value of x for which t has its minimum value, differentiate t with respect to x and set the derivative equal to zero. Show that the result implies n1xa2+x2=n2(dx)b2+(dx)2 (c) Show that this expression in turn gives Snells law. n1sin1=n2sin2 Figure P34.54 Problems 54 and 55.arrow_forwardThe object in Figure P23.52 is mid-way between the lens and the mirror, which are separated by a distance d = 25.0 cm. The magnitude of the mirrors radius of curvature is 20.0 cm, and the lens has a focal length of 16.7 cm. (a) Considering only the light that leaves the object and travels first toward the mirror, locate the final image formed by this system. (b) Is the image real or virtual? (c) Is it upright or inverted? (d) What is the overall magnification of the image? Figure P23.52arrow_forward
- A ray of light is incident at an angle 30.0 on a plane slab of flint glass surrounded by water. (a) Find the refraction angle. (b) Suppose the index of refraction of the surrounding medium can be adjusted, but the incident angle of the light remains the same. As the index of refraction of the medium approaches that of the glass, what happens to the refraction angle? (c) What happens to the refraction angle when the mediums index of refraction exceeds that of the glass?arrow_forwardA light ray navels from vacuum into a slab of material with index of refraction n1 at incident angle with respect to the surface. It subsequently passes into a second slab of material with index of refraction n2 before passing back into vacuum again. The surfaces of the different materials are all parallel to one another. As the light exits the second slab, what can be said of the final angle that the outgoing light makes with the normal? (a) (b) (c) = (d) The angle depends on the magnitudes of n1 and n2. (e) The angle depends on the wavelength of the light.arrow_forwardThe Sun appears at an angle of 53.0 above the horizontal as viewed by a dolphin swimming underwater. What angle does the sunlight striking the water actually make with the horizon?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning