College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 21P
To determine
Theindex of refraction of amaterial, when a beam of light hits the interface between air and an unknown material at an angle
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A laser beam shines along the surface of a block of transparent material (see Fig). Half of the beam goes straight to a detector, while the other half travels through the block and then hits the detector. The time delay between the arrival of the two light beams at the detector is 6.25 ns. What is the index of refraction of this material?
A ray of light travels from a liquid-to-flexi glass interface at
an angle of 45.0°. Indices of refraction for the flexi glass and
liquid are, respectively, 1.3 and 1.5. What is the angle of
refraction for the ray moving through the liquid?
A laser beam shines along the surface of a block of transparent material (see figure below). Half of the beam goes straight to a detector, while the other half travels through the block and then hits the detector. The time delay between the arrival of the two light beams at the detector is 6.25 ns. What is the index of refraction of this material?
Chapter 22 Solutions
College Physics
Ch. 22 - Prob. 1RQCh. 22 - Review Question 22.2 How can we test the law of...Ch. 22 - Review Question 22.3 Why is the expression light...Ch. 22 -
Review Question 22.4 Why did we study total...Ch. 22 - Review Question 22.5 What is the critical angle...Ch. 22 - Review Question 22.6 Why is the sky blue? Why are...Ch. 22 - Prob. 7RQCh. 22 - 1. How can you convince your friend that a beam of...Ch. 22 - 2. Each point of a light-emitting object
a. sends...Ch. 22 - What is a light ray? a. A thin beam of light b. A...
Ch. 22 - Prob. 5MCQCh. 22 - You fix a point-like light source 3.0m away from a...Ch. 22 - Prob. 7MCQCh. 22 - A light ray travels through air and then passes...Ch. 22 - 9. A right triangular prism sits on a base A...Ch. 22 - 10. A laser beam travels through oil in a...Ch. 22 - Prob. 11MCQCh. 22 - Prob. 12MCQCh. 22 - What effects of light radiation and reflection are...Ch. 22 - Prob. 14CQCh. 22 - Prob. 15CQCh. 22 - Explain how a sundial works (a sundial is just a...Ch. 22 - Prob. 17CQCh. 22 - Prob. 18CQCh. 22 - Prob. 19CQCh. 22 - Prob. 20CQCh. 22 - Prob. 21CQCh. 22 - The visible diameters of the Moon and the Sun are...Ch. 22 - The shadow of the Moon on Earth is 200 km wide....Ch. 22 - Prob. 24CQCh. 22 - 25. During the day, you can see the trees in your...Ch. 22 - 26. You look at a fish underwater Draw a ray...Ch. 22 - 27. Take a pencil and try to touch a penny on the...Ch. 22 - 28. Will a beam of light experience total internal...Ch. 22 - Prob. 29CQCh. 22 - Prob. 30CQCh. 22 - Prob. 31CQCh. 22 - Prob. 32CQCh. 22 - 33. What phenomena can be explained using a wave...Ch. 22 - How is it possible that two different models can...Ch. 22 - Oliver has finished building a wall in a house. He...Ch. 22 - Tree height You are standing under a tree. The...Ch. 22 - Lunar eclipse A lunar eclipse happens when the...Ch. 22 - * Shadows during romantic dinner You and a friend...Ch. 22 - * Pinhole camera (camera obscura) You want to make...Ch. 22 - 6. * Solar eclipse Only observers in a very narrow...Ch. 22 - Prob. 7PCh. 22 - An extended light source can be modeled as a group...Ch. 22 - * You have a small mirror. While holding the...Ch. 22 - Prob. 11PCh. 22 - 12. Design a mirror arrangement so that light from...Ch. 22 - Two mirrors are oriented at right angles. A narrow...Ch. 22 - Prob. 14PCh. 22 - A flat mirror is rotated 17 about an axis in the...Ch. 22 - (a) A laser beam passes from air into a 25 glucose...Ch. 22 - 17. A beam of light passes from glass with...Ch. 22 - A beam of light passes from air into a transparent...Ch. 22 - 19. * Moving laser beam An aquarium open at the...Ch. 22 - **Lifting light You have a V-shaped transparent...Ch. 22 - Prob. 21PCh. 22 - Prob. 22PCh. 22 - 23. * BIO Vitreous humor Behind the lens of the...Ch. 22 - Prob. 24PCh. 22 - * Light moving up and toward the right in air...Ch. 22 - * A laser beam is incident at 30 with respect to...Ch. 22 - * Can your light be seen? You swim under water at...Ch. 22 - * Light is incident on the boundary between two...Ch. 22 - 29. Diamond total reflection Determine the...Ch. 22 - Determine the refractive index of a glucose...Ch. 22 - * You wish to use a prism to change the direction...Ch. 22 - * You aim a laser beam (in air) at 80.0 with...Ch. 22 - 33. * Prism total reflection What must be the...Ch. 22 - Gems and critical angles In gemology, two of the...Ch. 22 - (a) The refractive index for the gem aquamarine is...Ch. 22 - 36. * You have three transparent media with...Ch. 22 - 37. (a) Rays of light are incident on a glass-air...Ch. 22 - 42. ** When reaching a boundary between two media,...Ch. 22 - 43. * A laser beam travels from air (n = 1.00)...Ch. 22 - . You sit on a raft and want to orient a mirror so...Ch. 22 - 45. ** Rain sensor Many cars today are equipped...Ch. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - 48. A light ray is incident on a flat piece of...Ch. 22 - 49. * Prism You have a triangular prism made of...Ch. 22 - * You have a candle and a large piece of paper...Ch. 22 - 52. * You place a point-like source of light at...Ch. 22 - 53. ** There is a light pole on one bank of a...Ch. 22 - 54. ** Coated optic fiber An optic fiber of...Ch. 22 - relative to the normal, hits the mirror, reflects,...Ch. 22 - 56. ** A scuba diver stands at the bottom of a...Ch. 22 - Prob. 57RPPCh. 22 - Rainbows How is a rainbow formed? Recall that the...Ch. 22 - Rainbows How is a rainbow formed? Recall that the...Ch. 22 - Prob. 60RPPCh. 22 - Prob. 61RPPCh. 22 - Rainbows How is a rainbow formed? Recall that the...Ch. 22 - Prob. 63RPPCh. 22 - Prob. 64RPPCh. 22 - Rainbows How is a rainbow formed? Recall that the...Ch. 22 - Prob. 66RPPCh. 22 - Prob. 67RPPCh. 22 - Prob. 68RPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Unreasonable results Light traveling from water to a gemstone strikes the surface at an angle of 80.00 and has an angle of refraction of 15.2°. (a) What is the speed of light in the gemstone? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardA light ray travels from vacuum into a slab of material with index of refraction n1 at incident angle θ with respect to the surface. It subsequently passes into a second slab of material with index of refraction n2 before passing back into vacuum again. The surfaces of the different materials are all parallel to one another. As the light exits the second slab, what can be said of the final angle ϕ that the outgoing light makes with the normal? (a) ϕ > θ (b) ϕ < θ (c) ϕ = θ (d) The angle depends on the magnitudes of n1 and n2. (e) The angle depends on the wavelength of the light.arrow_forwardLight traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forward
- The index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardLight is incident on a prism as shown in Figure P38.31. The prism, an equilateral triangle, is made of plastic with an index of refraction of 1.46 for red light and 1.49 for blue light. Assume the apex angle of the prism is 60.00. a. Sketch the approximate paths of the rays for red and blue light as they travel through and then exit the prism. b. Determine the measure of dispersion, the angle between the red and blue rays that exit the prism. Figure P38.31arrow_forwardPierre de Fermat (16011665) showed that whenever light travels from one point to another, its actual path is the path that requires the smallest time interval. This statement is known as Fermats principle. The simplest example is for light propagating in a homogeneous medium. It moves in a straight line because a straight line is the shortest distance between two points. Derive Snells law of refraction from Fermats principle. Proceed as follows. In Figure P34.54, a light ray travels from point P in medium 1 to point Q in medium 2. The two points are, respectively, at perpendicular distances a and b from the interface. The displacement from P to Q has the component d parallel to the interface, and we let x represent the coordinate of the point where the ray enters the second medium. Let t = 0 be the instant the light starts from P. (a) Show that the time at which the light arrives at Q is t=r1v1+r2v2=n1a2+x2c+n2b2+(dx)2c (b) To obtain the value of x for which t has its minimum value, differentiate t with respect to x and set the derivative equal to zero. Show that the result implies n1xa2+x2=n2(dx)b2+(dx)2 (c) Show that this expression in turn gives Snells law. n1sin1=n2sin2 Figure P34.54 Problems 54 and 55.arrow_forward
- Consider a light ray that enters a pane of glass with air on one side and water on the other side as shown in Figure P38.21. The light ray experiences refraction at the first interface when it enters the glass from the water and again at the second interface when it exits the glass into the air. Assume the index of refraction of the glass is 1.54. For a ray of light, find the angle of incidence 1 in the water such that the ray experiences total internal reflection when it strikes the glassair interface on the other side. FIGURE P38.21arrow_forwardWhat happens to a light wave when it travels from air into glass? (a) Its speed remains the same. (b) Its speed increases. (c) Its wavelength increases. (d) Its wavelength remains the same. (e) Its frequency remains the same.arrow_forwardA light ray navels from vacuum into a slab of material with index of refraction n1 at incident angle with respect to the surface. It subsequently passes into a second slab of material with index of refraction n2 before passing back into vacuum again. The surfaces of the different materials are all parallel to one another. As the light exits the second slab, what can be said of the final angle that the outgoing light makes with the normal? (a) (b) (c) = (d) The angle depends on the magnitudes of n1 and n2. (e) The angle depends on the wavelength of the light.arrow_forward
- A Fermats principle of least time for refraction. A ray of light traveling in a medium with speed v1 leaves point A and strikes the boundary between the incident and transmitted media a horizontal distance x from point A as shown in Figure P38.98. The refracted ray travels with speed v2 in the second medium, eventually reaching point B. The horizontal distance between points A and B is L. a. Calculate the time t required for the light to travel from A to B in terms of the parameters labeled in the figure. b. Now take the derivative of t with respect to x. What is the condition for which the ray of light will take the shortest time to travel from A to B? Figure P38.98arrow_forwardA light ray is incident on an interface between water (n = 1.333) and air (n = 1.0002926) from within the air. If the angle of incidence in the air is 30.0, what is the angle of the refracted ray in the water?arrow_forwardA ray of light is incident at an angle 30.0 on a plane slab of flint glass surrounded by water. (a) Find the refraction angle. (b) Suppose the index of refraction of the surrounding medium can be adjusted, but the incident angle of the light remains the same. As the index of refraction of the medium approaches that of the glass, what happens to the refraction angle? (c) What happens to the refraction angle when the mediums index of refraction exceeds that of the glass?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning