Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 12RQ
Discuss the constraints in the selection of a cutting tool.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a cutting test with 0.3 mm flank wear as tool
failure criterion, a tool life of 10 min was obtained
at a cutting velocity of 20 m/min. Taking tool life
exponent as 0.25, the tool life in minutes at 40
m/min of cutting velocity will be
Draw the geometry of single point cutting tool (3 views) and explain the importance of each angle in metal cutting.
Question 1: Explain the following terms and situations in metal cutting. Give enough explanation with figures if it is necessary.
a) Up and down milling operations. What are the effects on the workpiece surface finish and machine tool? b) Orthogonal and oblique cutting. c) Cutting force diagram in orthogonal cutting. d) Theoretical prediction of shear angle in orthogonal cutting. e) Machinability. f) Force and chatter vibrations. How can you detect the vibration during the machining? How can you decide which type of the vibration you have? g) Mode shapes. Mode coupling. h) Process damping. Which parameters can affect the process damping? i) j) Regenerative chatter vibrations. k) Stability lobes.
Question 2: How will the cutting force be affected by the following situations during the machining operation? Why?
a) Large rake angle b) Small relief angle c) Large nose radius d) Sharp cutting edge e) Smooth rake face f) Hard workpiece material g) High cutting speed h) Large feed rate i)…
Chapter 22 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 22 - For metal-cutting tools, what is the most...Ch. 22 - What is hot hardness compared to hardness?Ch. 22 - Prob. 3RQCh. 22 - Why is impact strength an important property in...Ch. 22 - Cemented carbide tools are made by a powder...Ch. 22 - What are the primary considerations in tool...Ch. 22 - What is the general strategy behind coated tools?Ch. 22 - Prob. 8RQCh. 22 - How is a CBN tool manufactured?Ch. 22 - Prob. 10RQ
Ch. 22 - Prob. 11RQCh. 22 - Discuss the constraints in the selection of a...Ch. 22 - What does cemented mean in the manufacture of...Ch. 22 - What advantage do ground carbide inserts have over...Ch. 22 - What is a chip groove?Ch. 22 - What is the DCL?Ch. 22 - Suppose you made four beams out of carbide, HSS,...Ch. 22 - Multiple coats or layers are put on the carbide...Ch. 22 - What tool material would you recommend for...Ch. 22 - What makes the process that makes TiC coatings for...Ch. 22 - Why does a TiN-coated tool consume less power than...Ch. 22 - For what work material are CBN tools more commonly...Ch. 22 - Why is CBN better for machining steel than...Ch. 22 - What is the typical coefficient of variation for...Ch. 22 - What is meant by the statement Tool life is a...Ch. 22 - The typical value of a coefficient of variation in...Ch. 22 - Machinability is defined in many ways. Explain how...Ch. 22 - What are the chief functions of cutting fluids?Ch. 22 - Prob. 29RQCh. 22 - Why is the PVD process used to coat HSS tools?Ch. 22 - Why is there no universal cutting tool material?Ch. 22 - What is an 18-4-1 HSS composed of?Ch. 22 - Over the years, tool materials have been developed...Ch. 22 - Why is the rigidity of the machine tool an...Ch. 22 - Explain how it can be that the tool wears when it...Ch. 22 - What is a honed edge on a cutting tool and why is...Ch. 22 - Suppose you have a turning operation using a tool...Ch. 22 - A 2 in.-diameter bar of steel was turned at 284...Ch. 22 - Prob. 3PCh. 22 - The following data have been obtained for...Ch. 22 - In the insert is set with a 0 side cutting-edge...Ch. 22 - Prob. 6PCh. 22 - Here is a single point tool. Identify angles A...Ch. 22 - Figure 22.B gives data for cutting speed and tool...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
In each case, express the shear and moment functions In terms of x, and then draw the shear and moment diagrams...
Mechanics of Materials (10th Edition)
1.1 What is the difference between an atom and a molecule? A molecule and a crystal?
Manufacturing Engineering & Technology
After the collision, the car moves with a velocity of 15 km/h to the right relative to the truck. Determine the...
Engineering Mechanics: Dynamics (14th Edition)
Determine the force P needed to hold the 60-lb weight in equilibrium. Prob. F6-13
Engineering Mechanics: Statics
The acrylic plastic rod is 200 mm long and 15 mm in diameter. If an axial load of 300 N is applied to it, deter...
Mechanics of Materials
Conditions in a room are measured to be 80 F db and 65 F wb, respectively. Compute the humidity ratio and relat...
Heating Ventilating and Air Conditioning: Analysis and Design
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 2. The two sources of heat are (a) shearing in the primary shear plane and (b) friction at the tool-chip interface. What type of the tool wear or tool failure could be caused as a result of developing these heat sources on machining process? Explain your answer in accordance with following representation of tool wear. Insert cutting edgearrow_forward3. Draw the forces and angles involved in the cutting process and calculate shear angle (Ø), friction coefficient and tangential force if ,cutting force = 80 kN , resultant of forces =100kN , friction force=75kN, rake angle =20° undeformed chip thickness = 0.65mm and deformed chip thickness = 0.72mm .arrow_forward3. Draw the forces and angles involved in the cutting process and calculate shear angle (0), friction coefficient and tangential force if .cutting force 80 kN, resultant of forces 100KN, friction force-75KN, rake angle =20° undeformed chip thickness %3D 0.65mm and deformed chip thickness 0.72mm. %3Darrow_forward
- Write down the important properties of cutting tool?Write short note on4different types of cutting fluids commonly used in detail.arrow_forwardChoose TWO (2) types of cutting processes that are suitable for cutting thick materials (>20mm thick plate).arrow_forward(a) Draw and label the basic orthogonal cutting process model. The diagram must include cutting direction, shear plane, chip formation and all relevant angles. (b) An orthogonal cutting operation is being carried out under the following conditions: depth of cut, to = 0.1 mm, chip thickness, to 0.2 mm, width of cut = 4 mm, cutting speed, v = 3 m/s, rake angle, a = 10°, Cutting force, Fo = 5000 N, and Thrust force, Fi= 200 N. Calculate the percentage of the total energy that is dissipated in the shear plane of cutting process. *)arrow_forward
- In an orthogonal cutting test, the cutting force and thrust force were observed to be 1000N and 500 N respectively. If the rake angle of tool is zero, What is the coefficient of friction in chip-tool interface ?arrow_forwardQ2 Describe FOUR (4) major independent and dependent variables that influence cutting process. (a)arrow_forward3. What are the important characteristics of a cutting tool material?arrow_forward
- Question 3. a. A cast iron component for motorcycle is to be turned with machine settings of feed = 0.22 mm/rev, and speed = 100 m/min. The cutting tool is a carbide tip with a nose radius of 1.2 mm and the rai for the material at a cutting speed of 100 m/min is 1.3. Calculate the surface roughness for this cut. [6 marks]arrow_forwardi need the answer quicklyarrow_forwardUsing the Taylors tool life equation with exponent n = 0.5, if the cutting speed is reduced %3D by 50% the ratio of new tool life to original tool life isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License