Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 76GP
In a simple model of the hydrogen atom, the electron revolves in a circular orbit around the proton with a speed of 2.2 × 106 m/s. Determine the radius of the electron’s orbit. [Hint: See Chapter 5 on circular motion.]
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A hydrogen atom contains a single electron that moves in a circular orbit about a single proton. Assume the proton is stationary, and the electron has a speed of 9.2 *105 m/s. Find the radius between the stationary proton and the electron orbit within the hydrogen atom.
Homework Question 13. A proton is shot at the nucleus of a gold atom. When the proton is a long way from the atom, its speed is 6 x106 m/sec. How far from the center of the nucleus is the turning point of the proton? (There is a periodic table in the appendix of your book.)
Multiple-Concept Example 3 provides some pertinent background for this problem. Suppose a single electron orbits about a nucleus
containing two protons (+2e), as would be the case for a helium atom from which one of the naturally occurring electrons is removed.
The radius of the orbit is 2.81 x 10-11 m. Determine the magnitude of the electron's centripetal acceleration.
Number
i
Units
m/s^2
Chapter 21 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 21.5 - Return to the Chapter-Opening Question, page 559,...Ch. 21.5 - What is the magnitude of F12 (and F21) in Example...Ch. 21.5 - Determine the magnitude and direction of the net...Ch. 21.5 - (a) Consider two point charges of the same...Ch. 21.6 - Four charges of equal magnitude, but possibly...Ch. 21 - If you charge a pocket comb by rubbing it with a...Ch. 21 - Why does a shirt or blouse taken from a clothes...Ch. 21 - Explain why fog or rain droplets tend to form...Ch. 21 - A positively charged rod is brought close to a...Ch. 21 - Why does a plastic ruler that has been rubbed with...
Ch. 21 - Contrast the net charge on a conductor to the free...Ch. 21 - Figures 217 and 218 show how a charged rod placed...Ch. 21 - When an electroscope is charged, the two leaves...Ch. 21 - The form of Coulombs law is very similar to that...Ch. 21 - We are not normally aware of the gravitational or...Ch. 21 - Is the electric force a conservative force? Why or...Ch. 21 - What experimental observations mentioned in the...Ch. 21 - When a charged ruler attracts small pieces of...Ch. 21 - Explain why the test charges we use when measuring...Ch. 21 - When determining an electric field, must we use a...Ch. 21 - Draw the electric field lines surrounding two...Ch. 21 - Assume that the two opposite charges in Fig. 2134a...Ch. 21 - Consider the electric field at the three points...Ch. 21 - Why can electric field lines never cross?Ch. 21 - Given two point charges, Q and 2Q, a distance ...Ch. 21 - Suppose the ring of Fig. 2128 has a uniformly...Ch. 21 - Consider a small positive test charge located on...Ch. 21 - We wish to determine the electric field at a point...Ch. 21 - In what ways does the electron motion in Example...Ch. 21 - Describe the motion of the dipole shown in Fig....Ch. 21 - Explain why there can be a net force on an...Ch. 21 - (I) What is the magnitude of the electric force of...Ch. 21 - (I) How many electrons make up a charge of 38.0 C?Ch. 21 - (I) What is the magnitude of the force a + 25 C...Ch. 21 - (I) What is the repulsive electrical force between...Ch. 21 - (II) When an object such as a plastic comb is...Ch. 21 - (II) Two charged dust particles exert a force of...Ch. 21 - (II) Two charged spheres are 8.45 cm apart. They...Ch. 21 - (II) A person scuffing her feet on a wool rug on a...Ch. 21 - (II) What is the total charge of all the electrons...Ch. 21 - (II) Compare the electric force holding the...Ch. 21 - (II) Two positive point charges are a fixed...Ch. 21 - (II) Particles of charge +75, +48, and 85 C are...Ch. 21 - (II) Three charged particles are placed at the...Ch. 21 - (II) Two small nonconducting spheres have a total...Ch. 21 - (II) A charge of 4.15 mC is placed at each corner...Ch. 21 - (II) Two negative and two positive point charges...Ch. 21 - (II) A charge Q is transferred from an initially...Ch. 21 - (III) Two charges, Q0 and 4Q0, are a distance ...Ch. 21 - (III) Two positive charges +Q are affixed rigidly...Ch. 21 - (III) Two small charged spheres hang from cords of...Ch. 21 - (I) What are the magnitude and direction of the...Ch. 21 - (I) A proton is released in a uniform electric...Ch. 21 - (I) Determine the magnitude and direction of the...Ch. 21 - (I) A downward electric force of 8.4 N is exerted...Ch. 21 - (I) The electric force on a +4.20-C charge is...Ch. 21 - (I) What is the electric field at a point when the...Ch. 21 - (II) Draw, approximately, the electric field lines...Ch. 21 - (II) What is the electric field strength at a...Ch. 21 - (II) A long uniformly charged thread (linear...Ch. 21 - (II) The electric field midway between two equal...Ch. 21 - (II) Calculate the electric field at one corner of...Ch. 21 - (II) Calculate the electric field at the center of...Ch. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - (II) Two point charges, Q1 = 25 and Q2 = +45 ,...Ch. 21 - (II) A very thin line of charge lies along the x...Ch. 21 - (II) (a) Determine the electric field E at the...Ch. 21 - (II) Draw, approximately, the electric field lines...Ch. 21 - (II) Two parallel circular rings of radius R have...Ch. 21 - (II) You are given two unknown point charges, Q1...Ch. 21 - (II) Use Coulombs law to determine the magnitude...Ch. 21 - (II) (a) Two equal charges Q are positioned at...Ch. 21 - (II) At what position, x = xM, is the magnitude of...Ch. 21 - (II) Estimate the electric field at a point 2.40...Ch. 21 - (II) The uniformly charged straight wire in...Ch. 21 - (II) Use your result from Problem 46 to find the...Ch. 21 - (II) Determine the direction and magnitude of the...Ch. 21 - (II) A thin rod bent into the shape of an arc of a...Ch. 21 - (III) A thin glass rod is a semicircle of radius...Ch. 21 - (III) Suppose a uniformly charged wire starts at...Ch. 21 - (III) Suppose in Example 2111 that x = 0.250m. Q =...Ch. 21 - (III) A thin rod of length carries a total charge...Ch. 21 - (III) Uniform plane of charge. Charge is...Ch. 21 - (III) Suppose the charge Q on the ring of Fig....Ch. 21 - (II) An electron with speed v0 = 27.5 106 m/s is...Ch. 21 - (II) An electron has an initial velocity...Ch. 21 - (II) An electron moving to the right at 7.5 105...Ch. 21 - (II) At what angle will the electrons in Example...Ch. 21 - (II) An electron is traveling through a uniform...Ch. 21 - (II) A positive charge q is placed at the center...Ch. 21 - (II) A dipole consists of charges +e and e...Ch. 21 - (II) The HCl molecule has a dipole moment of about...Ch. 21 - (II) Suppose both charges in Fig. 2145 (for a...Ch. 21 - (II) An electric dipole, of dipole moment p and...Ch. 21 - (III) Suppose a dipole p is placed in a nonuniform...Ch. 21 - (III) (a) Show that at points along the axis of a...Ch. 21 - How close must two electrons be if the electric...Ch. 21 - Given that the human body is mostly made of water,...Ch. 21 - A 3.0-g copper penny has a positive charge of 38...Ch. 21 - Measurements indicate that there is an electric...Ch. 21 - (a) The electric field near the Earths surface has...Ch. 21 - A water droplet of radius 0.018 mm remains...Ch. 21 - Estimate the net force between the CO group and...Ch. 21 - Suppose that electrical attraction, rather than...Ch. 21 - In a simple model of the hydrogen atom, the...Ch. 21 - A positive point charge Q1 = 2.5 105 C is fixed...Ch. 21 - When clothes are removed from a dryer, a 40-g sock...Ch. 21 - A small lead sphere is encased in insulating...Ch. 21 - A large electroscope is made with leaves that are...Ch. 21 - Dry air will break down and generate a spark if...Ch. 21 - Two pint charges, Q1 = 6.7 and Q2 = 1.8 C, are...Ch. 21 - Packing material made of pieces of foamed...Ch. 21 - One type of electric quadrupole consists of two...Ch. 21 - Suppose electrons enter a uniform electric field...Ch. 21 - An electron moves in a circle of radius r around a...Ch. 21 - Three very large square planes of charge are...Ch. 21 - A point charge (m = 1.0 g) at the end of an...Ch. 21 - Four equal positive point charges, each of charge...Ch. 21 - Two small, identical conducting spheres A and B...Ch. 21 - A point charge of mass 0.210 kg, and net charge...Ch. 21 - A one-dimensional row of positive ions, each with...Ch. 21 - (III) A thin ring-shaped object of radius a...Ch. 21 - (III) An 8.00 C charge is on the x axis of a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
52. Actual velocity data for a lion pursuing prey are shown in Figure P2.52. Estimate:
Figure P2.52
a. The ini...
College Physics: A Strategic Approach (4th Edition)
Continuously Habitable Zone. Is Earth in a zone that will remain continuously habitable from the Sun’s birth to...
Life in the Universe (4th Edition)
The focal length of the eyepiece of the microscope.
Physics (5th Edition)
7. (II) A child in a boat throws a 5.30-kg package out horizontally with a speed of 10.0 m/s, Fig. 7-31. Calcul...
Physics: Principles with Applications
Write each number in decimal form.
28. 4.19 × 10–6
Applied Physics (11th Edition)
A conducting sphere of radius a is surrounded by a concentric spherical shell of radius b. Both are initially u...
Essential University Physics (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) At what speed will a proton move in a circular path of the same radius as the electron in the previous exercise? (b) What would the radius of the path be if tlie proton had the same speed as the election? (c) What would the radius be if the proton had tlie same kinetic energy' as die electron? (d) The same momentum?arrow_forward(a) At what speed will a proton move in a circular path of the same radius as the electron in Exercise 22.12? (b) What would the radius of the path be it the proton had the same speed as the electron? (c) What would the radius be if the proton had the same kinetic energy as the electron? (d) The same momentum?arrow_forwardA proton is released from rest at the origin in a uniform electric field in the positive x direction with magnitude 850 N/C. What is the change in the electric potential energy of the protonfield system when the proton travels to x = 2.50 m? (a) 3.40 1016 J (b) 3.40 1016 J (c) 2.50 1016 J (d) 2.50 1016 J (e) 1.60 1019 Jarrow_forward
- A uniformly charged ring of radius R = 25.0 cm carrying a total charge of 15.0 C is placed at the origin and oriented in the yz plane (Fig. P24.54). A 2.00-g particle with charge q = 1.25 C, initially at the origin, is nudged a small distance x along the x axis and released from rest. The particle is confined to move only in the x direction. a. Show that the particle executes simple harmonic motion about the origin. b. What is the frequency of oscillation for the particle? Figure P24.54arrow_forwardA water molecule is made up of two hydrogen atoms and one oxygen atom, with a total of 10 electrons and 10 protons. The molecule is modeled as a dipole with an effective separation d = 3.9 1012 m between its positive and negative charges. What is the magnitude of the water molecules dipole moment?arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forward
- A hydrogen atom when in its lowest energy state consists of a proton nucleus of charge +e (remember that +e = 1.6 x 10-19 C) and an electron of charge -e and mass of 9.1 x 10-31 kg. In the Bohr model of the atom, the electron moves around the nucleus in an approximately circular orbit with a radius of 0.52 x 10-10 m. The speed of the electron when in this lowest energy orbit is approximately 2.3 x 106 m/s. Imagine that we want to ionize this atom (that is free up the electron from its nucleus) by launching ANOTHER electron at the atom to break it apart. If we were to launch this electron from very far away from the atom, then how fast must it be launched in order to break apart the atom, so that all three particles (the proton and two electrons) end up at rest, very far apart?arrow_forwardA particle with a charge of 5 x 10°° C and a mass of 20 g moves uniformly with a speed of 7 m/s in a circular orbit around a stationary particle with a charge of -5 x 106 C. What is the radius of the orbit? O 0.23 m 1.6 m O 4.4 m O 0.62 marrow_forwardA small sphere with mass 9.00 μgμg and charge −4.30μC is moving in a circular orbit around a stationary sphere that has charge +7.50μC. If the speed of the small sphere is v = 6400 m/s, what is the radius of its orbit? Treat the spheres as point charges and ignore gravity.arrow_forward
- One type of ink-jet printer, called an electrostatic ink-jet printer, forms the letters by using deflecting electrodes to steer charged ink drops up and down vertically as the ink jet sweeps horizontally across the page. The ink jet forms 35.0 μm-diameter drops of ink, charges them by spraying 800,000 electrons on the surface, and shoots them toward the page with a horizontal velocity of 17.0 m/s. Along the way, the drops pass through the long axis of two horizontal, parallel electrodes that are 6.0 mm long, 4.0 mm wide, and spaced 1.0 mm apart. The distance from the center of the electrodes to the paper is 1.90 cm. To form the letters, which have a maximum height of 6.0 mm, the drops need to be deflected up or down a maximum of 3.0 mm. Ink, which consists of dye particles suspended in alcohol, has a density of 800 kg/m³. 3 E D 80 C $ 4 R 888 F4 F V % 5 FS T ^ G 6 B Part A What electric field strength is needed between the electrodes to achieve this deflection? Express your answer with…arrow_forwardOne type of ink-jet printer, called an electrostatic ink-jet printer, forms the letters by using deflecting electrodes to steer charged ink drops up and down vertically as the ink jet sweeps horizontally across the page. The ink jet forms 30.0 µm-diameter drops of ink, charges them by spraying 800,000 electrons on the surface, and shoots them toward the page with a horizontal velocity of 22.0 m/s. Along the way, the drops pass through the long axis of two horizontal, parallel electrodes that are 6.0 mm long, 4.0 mm wide, and spaced 1.0 mm apart. The distance from the center of the electrodes to the paper is 1.50 cm. To form the letters, which have a maximum height of 6.0 mm, the drops need to be deflected up or down a maximum of 3.0 mm. Ink, which consists of dye particles suspended in alcohol, has a density of 800 kg/m³. ▼ Part A What electric field strength is needed between the electrodes to achieve this deflection? Express your answer with the appropriate units. ► View Available…arrow_forward35. An electron enters a parallel plate apparatus 10.0 cm long and 2.0 cm wide, moving horizontally at 8.0 X 107 m/s, as in Figure 5. The potential difference between the plates is 6.0 X 102 V. Calculate (a) the vertical deflection of the electron from its original path (b) the velocity with which the electron leaves the parallel plate apparatus 10.0 cm 2.0 cm 6.0 X 102 V 8.0 x 10 m/s Figure 5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY