Essential University Physics
Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 21, Problem 75P

Repeal Problem 59 for the case where the charge density in the slab is given by ρ = ρ0|x/d|, where ρ0 is a constant.

59. A charged slab extends infinitely in two dimensions and has thickness d in the third dimension, as shown in Fig. 21.36. The slab carries a uniform volume charge density ρ. Find expressions for the electric field (a) inside and (b) outside the slab, as functions of the distance x from the center plane. (Although the infinite slab is impossible, your answer is a good approximation to the field of a finite slab whose width is much greater than its thickness.)

  Chapter 21, Problem 75P, Repeal Problem 59 for the case where the charge density in the slab is given by  = 0|x/d|, where 0

FIGURE 21.36 Problems 59 and 75

Blurred answer
Students have asked these similar questions
In the figure a "semi-infinite" nonconducting rod (that is, infinite in one direction only) has uniform linear charge density λ = 3.23 µC/m. Find (including sign) (a) the component of electric field parallel to the rod and (b) the component perpendicular to the rod at point P (R = 32.9 m). R (a) Number i 1.530 Units (b) Number N V i 1.530 Units N >
Positive charge is distributed in a sphere of radius R that is centered at the origin. Inside the sphere, the electric field is Ē(r) = kr-1/4 f, where k is a positive constant. There is no charge outside the sphere. a) How is the charge distributed inside the sphere? In particular, find an equation for the charge density, p. b) Determine the electric field, E(r), for r > R (outside the sphere). c) What is the potential difference between the center of the sphere (r = 0) and the surface of the sphere (r = R)? d) What is the energy stored in this electric charge configuration?
Charge is distributed throughout a spherical volume of radius R with a density ρ = αr2, where α is a constant. Determine the electric field due to the charge at points both inside and outside the sphere.

Chapter 21 Solutions

Essential University Physics

Ch. 21 - In Gausss law, EdA=q0does the field E necessarily...Ch. 21 - The field of an infinite charged line decreases as...Ch. 21 - Why cant you use Gausss law to determine the field...Ch. 21 - Youre sitting inside an uncharged, hollow...Ch. 21 - Does Gausss law apply to a spherical Gaussian...Ch. 21 - The electric field of a flat sheet of charge is...Ch. 21 - In Fig. 21.32, the magnitude of the middle charge...Ch. 21 - Charges +2q and q are near each other. Sketch some...Ch. 21 - The net charge shown in Fig. 21.33 is +Q. Identify...Ch. 21 - A flat surface with area 2.0 m2 is in a uniform...Ch. 21 - The electric field on the surface of a...Ch. 21 - In the figure with GOT IT? 21.2, take E = 1.75...Ch. 21 - In Fig. 21.8, take the half-cylinders radius and...Ch. 21 - A sock comes out of the dryer with a trillion...Ch. 21 - Whats the electric flux through the closed...Ch. 21 - Interpret This problem involves applying Gauss's...Ch. 21 - A 2.6-C charge is at the center of a cube 7.5 cm...Ch. 21 - The electric field at the surface of a...Ch. 21 - A solid sphere 25 cm in radius carries 14C,...Ch. 21 - A 15-nC point charge is at the center of a thin...Ch. 21 - The electric field strength outside a charge...Ch. 21 - An electron close to a large, Hat sheet of charge...Ch. 21 - Find the field produced by a uniformly charged...Ch. 21 - What surface charge density on an infinite sheet...Ch. 21 - A rod 50 cm long and 1.0 cm in radius carries a...Ch. 21 - Whats the approximate field strength 1 cm above a...Ch. 21 - The disk in Fig. 21.22 has area 0.14 m2 and is...Ch. 21 - What is the electric field strength just outside...Ch. 21 - A net charge of 5.0 C is applied on one side of a...Ch. 21 - A positive point charge q lies at the center of a...Ch. 21 - A total charge of 18 C is applied to a thin,...Ch. 21 - Example 21.2: A positive point charge +q is at the...Ch. 21 - Example 21.2: A point charge q is at the center of...Ch. 21 - Example 21.2: A long, thin wire carrying uniform...Ch. 21 - Example 21.2: A long, thin wire canning uniform...Ch. 21 - Example 21.4: A long, straight wire carries a...Ch. 21 - Example 21.4: A long, thin rod carries charge...Ch. 21 - Example 21.4: An infinitely long rod carries a...Ch. 21 - Example 21.4: A 75.0-cm-long rod of diameter 2.54...Ch. 21 - Whats the flux through the hemispherical open...Ch. 21 - An electric field is given byE=E0(y/a)k, where E0...Ch. 21 - The electric field in a certain region is given by...Ch. 21 - A study shows that mammalian red blood cells...Ch. 21 - Positive charge is spread uniformly over the...Ch. 21 - A solid sphere 2.0 cm in radius carries a uniform...Ch. 21 - A point charge of 2Q is at the center of a...Ch. 21 - Prob. 51PCh. 21 - A spherical shell of radius R and negligible...Ch. 21 - A spherical shell 30 cm in diameter carries 85 C...Ch. 21 - A thick, spherical shell of inner radius a and...Ch. 21 - A long, thin wire carrying 5.6 nC/m runs down the...Ch. 21 - A long, solid rod of radius R carries a uniform...Ch. 21 - A solid rod 2.54 cm in diameter and 1.50 m long...Ch. 21 - If you painted positive charge on the floor, what...Ch. 21 - A charged slab extends infinitely in two...Ch. 21 - A solid sphere 10 cm in radius carries a 40-C...Ch. 21 - A nonconducting square plate 75 cm on a side...Ch. 21 - A 250-nC point charge is placed at the center of...Ch. 21 - An irregular conductor containing an irregular,...Ch. 21 - You measure the electric field strength at points...Ch. 21 - A point charge q is at the center of a spherical...Ch. 21 - A point charge q is at the center of a spherical...Ch. 21 - The volume charge density inside a solid sphere of...Ch. 21 - Figure 21.37 shows a rectangular box with sides 2a...Ch. 21 - The charge density within a charged sphere of...Ch. 21 - Calculate the electric fields in Example 21.2...Ch. 21 - A solid sphere of radius R carries a nonuniform...Ch. 21 - Problem 76 of Chapter 13 explored what happened to...Ch. 21 - An infinitely long solid cylinder of radius R...Ch. 21 - A solid sphere of radius R carries a uniform...Ch. 21 - Repeal Problem 59 for the case where the charge...Ch. 21 - Coaxial cables are widely used with audio-visual...Ch. 21 - A coaxial cable carries equal but opposite charges...Ch. 21 - How does the electric field between the conductors...Ch. 21 - Coaxial cables are widely used with audio-visual...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY