Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 21, Problem 57P
In the circuit of Figure P21.57, the switch S has been open for a long time. It is then suddenly closed. Take ε = 10.0 V, R1 = 50.0 kΩ, R2 = 100 kΩ, and C = 10.0 μF. Determine the time constant (a) before the switch is closed and (b) after the switch is closed. (c) Let the switch be closed at t = 0. Determine the current in the switch as a function of time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the circuit of the figure below, the switch S has been open for a long time. It is then suddenly closed. Take = 10.0 V, R₁ = 41.0 km2,
R₂ = 170 kn, and C = 12.0 μF.
E
R₁
www
i
(a) Determine the time constant before the switch is closed.
2.532
S
I = &
(b) Determine the time constant after the switch is closed.
2.04
S
1
R₁
(c) Let the switch be closed at t = 0. Determine the current in the switch as a function of time. (Assume I is in A and t is in s. Do not
enter units in your expression. Use the following as necessary: t.)
+
www
R₂
C
R2
X
For a long period of time the switch S
in position "b". At t = 0 s, the switch Si
moved from position "b" to position "a".
1 ΜΩ
www
3 ΜΩ
www
11 V
4 μF
Sb
Find the voltage across the 1 MN center-left
resistor at time t₁ = 3 s.
Answer in units of V.
Much later, at some time to = 0s, the switch
is moved from position "a" to position "b".
Find the voltage across the 1 MS center-left
resistor at time t' = 1.3 s.
Answer in units of V.
In the figure, & = 134 V, R₁ = 8.500, R₂ = 17.602, R3 = 26.4 02, and L = 2.14 H. Immediately after switch S is closed, what are (a) i₁ and (b)
i2? (Let currents in the indicated directions have positive values and currents in the opposite directions have negative values.) A long
time later, what are (c) i₁ and (d) i₂? The switch is then reopened. Just then, what are (e) i and (f) i2? A long time later, what are (g) i₁ and
(h) i₂?
(a) Number
(b) Number i
(c) Number
(d) Number
i
(e) Number
i
=8
Units
Units
Units
Units
S
Units
R₁
i₂ {R₂
>
>
W
R₁
>
ele
Chapter 21 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 21.1 - Consider positive and negative charges moving...Ch. 21.2 - Prob. 21.2QQCh. 21.2 - When does an incandescent lightbulb carry more...Ch. 21.5 - For the two incandescent lightbulbs shown in...Ch. 21.7 - Prob. 21.5QQCh. 21.7 - With the switch in the circuit of Figure 21.18a...Ch. 21.7 - Prob. 21.7QQCh. 21.9 - Consider the circuit in Figure 21.29 and assume...Ch. 21 - If the terminals of a battery with zero internal...Ch. 21 - Wire B has twice the length and twice the radius...
Ch. 21 - The current-versus-voltage behavior of a certain...Ch. 21 - Prob. 4OQCh. 21 - A potential difference of 1.00 V is maintained...Ch. 21 - Prob. 6OQCh. 21 - A metal wire of resistance R is cut into three...Ch. 21 - The terminals of a battery are connected across...Ch. 21 - Prob. 9OQCh. 21 - Two conducting wires A and B of the same length...Ch. 21 - When resistors with different resistances are...Ch. 21 - When operating on a 120-V circuit, an electric...Ch. 21 - Prob. 13OQCh. 21 - Prob. 14OQCh. 21 - In the circuit shown in Figure OQ21.15, each...Ch. 21 - Prob. 1CQCh. 21 - Prob. 2CQCh. 21 - Prob. 3CQCh. 21 - Referring to Figure CQ21.4, describe what happens...Ch. 21 - When the potential difference across a certain...Ch. 21 - Use the atomic theory of matter to explain why the...Ch. 21 - Prob. 7CQCh. 21 - (a) What advantage does 120-V operation offer over...Ch. 21 - Prob. 9CQCh. 21 - Prob. 10CQCh. 21 - If you were to design an electric heater using...Ch. 21 - Prob. 12CQCh. 21 - Prob. 13CQCh. 21 - Prob. 14CQCh. 21 - Why is it possible for a bird to sit on a...Ch. 21 - Prob. 1PCh. 21 - Prob. 2PCh. 21 - The quantity of charge q (in coulombs) that has...Ch. 21 - Prob. 4PCh. 21 - Prob. 5PCh. 21 - Figure P21.6 represents a section of a conductor...Ch. 21 - Prob. 7PCh. 21 - A 0.900-V potential difference is maintained...Ch. 21 - Prob. 9PCh. 21 - A lightbulb has a resistance of 240 when...Ch. 21 - Prob. 11PCh. 21 - Prob. 12PCh. 21 - While taking photographs in Death Valley on a day...Ch. 21 - Prob. 14PCh. 21 - If the current carried by a conductor is doubled,...Ch. 21 - Prob. 16PCh. 21 - Prob. 17PCh. 21 - Prob. 18PCh. 21 - Prob. 19PCh. 21 - Prob. 20PCh. 21 - Prob. 21PCh. 21 - Prob. 22PCh. 21 - Prob. 23PCh. 21 - Prob. 24PCh. 21 - A 100-W lightbulb connected to a 120-V source...Ch. 21 - Prob. 26PCh. 21 - Prob. 27PCh. 21 - Prob. 28PCh. 21 - A toaster is rated at 600 W when connected to a...Ch. 21 - Prob. 30PCh. 21 - Prob. 31PCh. 21 - Review. A well-insulated electric water heater...Ch. 21 - A battery has an emf of 15.0 V. The terminal...Ch. 21 - Two 1.50-V batterieswith their positive terminals...Ch. 21 - An automobile battery has an emf of 12.6 V and an...Ch. 21 - Prob. 36PCh. 21 - Prob. 37PCh. 21 - Prob. 38PCh. 21 - Consider the circuit shown in Figure P21.39. Find...Ch. 21 - Four resistors are connected to a battery as shown...Ch. 21 - Three 100- resistors are connected as shown in...Ch. 21 - Prob. 42PCh. 21 - Calculate the power delivered to each resistor in...Ch. 21 - Prob. 44PCh. 21 - The ammeter shown in Figure P21.45 reads 2.00 A....Ch. 21 - Prob. 46PCh. 21 - The circuit shown in Figure P21.47 is connected...Ch. 21 - In Figure P21.47, show how to add just enough...Ch. 21 - Taking R = 1.00 k and = 250 V in Figure P21.49,...Ch. 21 - For the circuit shown in Figure P21.50, we wish to...Ch. 21 - In the circuit of Figure P21.51, determine (a) the...Ch. 21 - Jumper cables are connected from a fresh battery...Ch. 21 - Prob. 53PCh. 21 - Prob. 54PCh. 21 - Prob. 55PCh. 21 - Prob. 56PCh. 21 - In the circuit of Figure P21.57, the switch S has...Ch. 21 - Prob. 58PCh. 21 - The circuit in Figure P21.59 has been connected...Ch. 21 - Assume that global lightning on the Earth...Ch. 21 - Prob. 61PCh. 21 - Prob. 62PCh. 21 - Prob. 63PCh. 21 - Prob. 64PCh. 21 - Prob. 65PCh. 21 - An oceanographer is studying how the ion...Ch. 21 - The values of the components in a simple series RC...Ch. 21 - Prob. 68PCh. 21 - Prob. 69PCh. 21 - Prob. 70PCh. 21 - The student engineer of a campus radio station...Ch. 21 - Prob. 72PCh. 21 - A battery has an emf and internal resistance r. A...Ch. 21 - Prob. 74PCh. 21 - Prob. 75PCh. 21 - Prob. 76PCh. 21 - Prob. 77P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the circuit of Figure P27.25, the switch S has been open for a long time. It is then suddenly closed. Determine the time constant (a) before the switch is closed and (b) after the switch is closed. (c) Let the switch be closed at t = 0. Determine the current in the switch as a function of time. Figure P27.25 Problems 25 and 26.arrow_forwardIntegrated Concepts (a) What energy is dissipated by a lightning bolt having a 20,000-A current, a voltage of 1.00102 MV, and a length of 1.00 ms? (b) What mass of tree sap could be raised from 18.0°C to its boiling point and then evaporated by this energy, assuming sap has the same thermal characteristics as water?arrow_forwardChapter 30, Problem 054 In the figure, ε = 118 V, R₁ = 14.9 №, R₂ = 21.3 N, R3 = 35.8 №, and L= 1.90 H. Immediately after switch S is closed, what are (a) i₁ and (b) i₂? (Let currents in the indicated directions have positive values and currents in the opposite directions have negative values.) A long time later, what are (c) ₁ and (d) i2? The switch is then reopened. Just then, what are (e) ₁ and (f) i₂? A long time later, what are (g) ₁ and (h) i₂? www R₁ R$ R₂ Larrow_forward
- Chapter 27, Problem 063 In the circuit of the figure 8 = 4.20 kV, C = 7.90 µF, R₁ = R₂ = R3 = 1.01 MS. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current ₁ in resistor 1, (b) current 12 in resistor 2, and (c) current i3 in resistor 3? At t = ∞ (that is, after many time constants), what are (d)i₁, (e)i2, and (f)i3? What is the potential difference V₂ across resistor 2 at (g)t = 0 and (h)t = ∞? ww R₁ E R₂ Chapter 27, Problem 065 GO In the figure R₁ = 10.9 kN, R₂ = 15.0 kN, C = 0.430 µF, and the ideal battery has emf ε = 23.0 V. First, the switch is closed a long time so that the steady state is reached. Then the switch is opened at time t = 0. What is the current in resistor 2 at t = 4.00 ms? R₁ Rg Für R₂ Carrow_forwardIn the circuit of the figure ℰ = 2.90 kV, C = 8.10 μF, R1 = R2 = R3 = 1.07 MΩ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i1 in resistor 1, (b) current i2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞ (that is, after many time constants), what are (d)i1, (e)i2, and (f)i3? What is the potential difference V2 across resistor 2 at (g)t = 0 and (h)t = ∞?arrow_forward3arrow_forward
- R 50.0 V C Consider the circuit with R = 177 kQ and C = 477 µF. If the capacitor is initially uncharged, what will be the magnitude of the current in milliamps (mA) through the resistor at a time 25.1 seconds after the switch is closed? (Enter answer as a positive number with 3 digits right of decimal. Do not enter unit.)arrow_forwardIn the figure, & = 111 V. R₁ = 9.83 0, R₂ = 27.80, R3 = 28.80, and L = 2.92 H. Immediately after switch 5 is closed, what are (a)i₁ and (b) i₂? (Let currents in the indicated directions have positive values and currents in the opposite directions have negative values.) A long time later, what are (c) i₁ and (d) i₂? The switch is then reopened. Just then, what are (e) i₁ and (f) i₂? A long time later, what are (g) 1₁ and (h) i₂? (a) Number i (b) Number i (c) Number (d) Number (e) Number i (f) Number i (g) Number i (h) Number i Units Units Units Units Units Units Units Units 8 ww www R₂ ele Larrow_forwardIn the circuit of the figure & = 3.20 kV, C = 7.80 µF, R1 = R2 = R3 = 1.03 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i, in resistor 1, (b) current iz in resistor 2, and (c) current iz in resistor 3? At t = 0 (that is, after many time constants), what are (d)i1. (e)i2, and (f)ig? What is the potential difference V2 across resistor 2 at (g)t 0 and (h)t = o? S R R, (a) Number i Units (b) Number Units (c) Number i Units (d) Number i Units (e) Number i Units (f) Number i Units (g) Number i Units (h) Number i Unitsarrow_forward
- In the circuit of the figure ℰ = 3.30 kV, C = 6.60 μF, R1 = R2 = R3 = 0.740 MΩ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i1 in resistor 1, (b) current i2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞ (that is, after many time constants), what are (d)i1, (e)i2, and (f)i3? What is the potential difference V2 across resistor 2 at (g)t = 0 and (h)t = ∞? Answer parts a, b, and c pleasearrow_forwardIn the figure, 8 = 149 V, R₁ = 12.10, R₂ =29.70, R3 = 28.8 2, and L = 1.97 H. Immediately after switch S is closed, what are (a) i₁ and (b) i2? (Let currents in the indicated directions have positive values and currents in the opposite directions have negative values.) A long time later, what are (c) i₁ and (d) i2? The switch is then reopened. Just then, what are (e) i₁ and (f) i2? A long time later, what are (g) i₁ and (h) i₂? (a) Number i (b) Number (c) Number i (d) Number i Units Units Units Units 8 iz↓ > R₂ R₁₂arrow_forward50.0 V Consider the circuit with R= 125 kQ and C = 407 uF. If the capacitor is initially uncharged, what will be the magnitude of the current in milliamps (mA) through the resistor at a time 26.3 seconds after the switch is closed? (Enter answer as a positive number with 3 digits right of decimal. Do not enter unit.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY