COSMIC PERSPECTIVE (LLF)W/MOD. ACCESS
9th Edition
ISBN: 9780135720943
Author: Bennett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 47EAP
To determine
The expected average number of galaxies similar in size to the milky way in cubes of side-length of 10 million light years.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider three periods in the history of the Universe: one million years after the Big Bang (age = 1 million years), about five billion
years ago (age = 9 billion years), and today. What is the ranking in the expansion rate of the Universe in these three period, from
fastest to slowest expansion:
O 1 million years, today, 9 billion years.
today, 1 million years, 9 billion years.
today, 9 billion years, 1 million years.
O 1 million years, 9 billion years, today.
Your friends are talking about Olber's Paradox:
Friend 1: When the universe was quite young, it was also quite small, and therefore light
was trapped inside the universe. This is why we don't see light from the edge of the
universe in every direction.
Friend 2: No, Olber's Paradox describes only light from stars, not from galaxies, and why
you can't use light from distant stars to see at night.
Friend 3: You're both right and you're both wrong. The paradox concerns itself with the
expansion of the universe, and explains why light from the early universe was able to be
released.
Are any of them right, in part or in whole?
mathematician Archimedes, responding to a claim that the number of grains of sand was infinite,
calculated that the number of grains of sand needed to fill the universe was on the order of 1063. Our
understanding of the size of the universe has changed since then, and we now know that the
observable universe alone is a sphere with a radius of 1026 m. Estimating the size of a grain of sand,
A) Approximately how many grains of sand would fill the observable universe?
B) How many times larger or smaller is this number than Archimedes' result?
Chapter 21 Solutions
COSMIC PERSPECTIVE (LLF)W/MOD. ACCESS
Ch. 21 - Prob. 1VSCCh. 21 - Prob. 2VSCCh. 21 - Prob. 3VSCCh. 21 - Prob. 4VSCCh. 21 - Prob. 1EAPCh. 21 - Prob. 2EAPCh. 21 - Prob. 3EAPCh. 21 - Prob. 4EAPCh. 21 - Prob. 5EAPCh. 21 - Prob. 6EAP
Ch. 21 - Prob. 7EAPCh. 21 - Prob. 9EAPCh. 21 - Prob. 10EAPCh. 21 - Prob. 11EAPCh. 21 - Prob. 12EAPCh. 21 - Prob. 13EAPCh. 21 - Prob. 14EAPCh. 21 - Prob. 15EAPCh. 21 - Prob. 16EAPCh. 21 - Prob. 17EAPCh. 21 - Prob. 18EAPCh. 21 - Prob. 19EAPCh. 21 - Prob. 20EAPCh. 21 - Prob. 21EAPCh. 21 - Prob. 22EAPCh. 21 - Prob. 23EAPCh. 21 - Prob. 24EAPCh. 21 - Prob. 25EAPCh. 21 - Prob. 26EAPCh. 21 - Prob. 27EAPCh. 21 - Prob. 28EAPCh. 21 - Prob. 29EAPCh. 21 - Prob. 30EAPCh. 21 - Prob. 31EAPCh. 21 - Prob. 32EAPCh. 21 - Prob. 34EAPCh. 21 - Prob. 36EAPCh. 21 - Life Story of a Spiral. Imagine that you are a...Ch. 21 - Prob. 39EAPCh. 21 - Prob. 40EAPCh. 21 - Prob. 41EAPCh. 21 - Prob. 42EAPCh. 21 - Prob. 43EAPCh. 21 - Prob. 44EAPCh. 21 - Prob. 45EAPCh. 21 - Prob. 46EAPCh. 21 - Prob. 47EAPCh. 21 - A Nearby Starburst. The galaxy M82, shown in...Ch. 21 - Prob. 49EAPCh. 21 - Prob. 50EAPCh. 21 - Prob. 51EAPCh. 21 - Prob. 52EAPCh. 21 - Prob. 53EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Looking for km/s/Mpc: Years: Years:arrow_forwardStuck on homework, especially the significant part. If the value of the Hubble constant is 70 kilometers per second per Mpc, then what is the Hubble time – that is, the amount of time the universe has been expanding since the Big Bang? Give your answer first in units of seconds, and then in units of billions of years. Your answer is significant to two digits.arrow_forwardIf we assume that the universe has been expanding at its current rate for its entire history, how old is the universe?arrow_forward
- Suppose we look at two distant galaxies: Galaxy 1 is twice as far away as Galaxy 2. In this case, A. Galaxy 1 must be twice as big as Galaxy 2. B. we are seeing Galaxy 1 as it looked at an earlier time in the history of the universe than Galaxy 2. C. we are seeing Galaxy 1 as it looked at a later time in the history of the universe than Galaxy 2. D. Galaxy 2 must be twice as old as Galaxy 1.arrow_forwardAssume the observable Universe is charge neutral, and that it contains n nuclei (hydrogen plus helium nuclei, ignoring other elements). Take the helium mass fraction as 1/4. How many electrons are there in the observable Universe? Enter your answer in scientific notation with one decimal place. Value: n = 4*1080arrow_forwardUsing our example from the previous unit, let's try to determine the Hubble time for this example universe. You were given that a good representative galaxy receded at a speed of 4000 km/s and was found to be 20 Mpc away. With that in mind, what would the age of that universe be in years (aka what is that universe's Hubble time)? Go ahead and take the number of kilometers per Mpc to be approximately 3.1*10^19 km/Mpc. While this problem may look scary at first, this is really just bringing you full circle to one of the unit conversion problems you encountered at the beginning of this course.arrow_forward
- Physics 17 & 19 please.arrow_forwardMeasure the length of the meter stick using your ruler. How many ‘rulers’ is equal to the length of the meter stick?arrow_forwardIf a galaxy is 9.0 Mpc away from Earth and recedes at 488 km/s, what is H0 (in km/s/Mpc)? km/s/Mpc What is the Hubble time (in yr)? years How old (in yr) would the universe be, assuming space-time is flat and the expansion of the universe has not been accelerating? How would acceleration change your answer? A.If the expansion of the Universe has been accelerating, the Universe could be substantially younger than the value entered above. BIf the expansion of the Universe has been accelerating, the Universe could be substantially older than the value entered above.arrow_forward
- What is the evidence that the Universe was homogeneous during its first 400,000 years?arrow_forwardIn which type of model universe is space-time infinite in extent and positively curved? List all possibilities.arrow_forwardSuppose astronomers discover a radio message from a civilization whose planet orbits a star 35 lightyears away. Their message encourages us to send a radio answer, which we decide to do. Suppose our governing bodies take 2 years to decide whether and how to answer. When our answer arrives there, their governing bodies also take two of our years to frame an answer to us. How long after we get their first message can we hope to get their reply to ours? (A question for further thinking: Once communication gets going, should we continue to wait for a reply before we send the next message?)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning