COSMIC PERSPECTIVE (LLF)W/MOD. ACCESS
9th Edition
ISBN: 9780135720943
Author: Bennett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 39EAP
To determine
To Describe: History of life from birth to present, assuming to be anelliptical galaxy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Suppose we look at two distant galaxies: Galaxy 1 is twice as far away as Galaxy 2. In this case,
A.
Galaxy 1 must be twice as big as Galaxy 2.
B.
we are seeing Galaxy 1 as it looked at an earlier time in the history of the universe than Galaxy 2.
C.
we are seeing Galaxy 1 as it looked at a later time in the history of the universe than Galaxy 2.
D.
Galaxy 2 must be twice as old as Galaxy 1.
Astronomy Question:
Read the questions slowly and answer with precise and long details about each of the questions. Answer correctly and follow my guidelines for a long and wonderful review after results. Your target/main observable galaxy is the whirlpool galaxy. Target: Whirlpool Galaxy Object Type: Galaxy Distance: 37 million light-years Constellation: Canes Venatici. DO NOT COPY AND PASTE OTHER WORK OR THINGS FROM THE INTERNET, use your own words.
In 500 words, please explain the relevance of this object to the physics course material in university andits importance to astronomy. (Some question you may seek to answer are: What beyond the objectitself is learned by studying this class of objects? What sorts of telescopes and observations would beneeded for more detailed, broader reaching studies of this source and objects of its nature?)
True or False: Dwarf elliptical galaxies and giant ellipticals probably formed in entirely different ways.a. Trueb. False
Chapter 21 Solutions
COSMIC PERSPECTIVE (LLF)W/MOD. ACCESS
Ch. 21 - Prob. 1VSCCh. 21 - Prob. 2VSCCh. 21 - Prob. 3VSCCh. 21 - Prob. 4VSCCh. 21 - Prob. 1EAPCh. 21 - Prob. 2EAPCh. 21 - Prob. 3EAPCh. 21 - Prob. 4EAPCh. 21 - Prob. 5EAPCh. 21 - Prob. 6EAP
Ch. 21 - Prob. 7EAPCh. 21 - Prob. 9EAPCh. 21 - Prob. 10EAPCh. 21 - Prob. 11EAPCh. 21 - Prob. 12EAPCh. 21 - Prob. 13EAPCh. 21 - Prob. 14EAPCh. 21 - Prob. 15EAPCh. 21 - Prob. 16EAPCh. 21 - Prob. 17EAPCh. 21 - Prob. 18EAPCh. 21 - Prob. 19EAPCh. 21 - Prob. 20EAPCh. 21 - Prob. 21EAPCh. 21 - Prob. 22EAPCh. 21 - Prob. 23EAPCh. 21 - Prob. 24EAPCh. 21 - Prob. 25EAPCh. 21 - Prob. 26EAPCh. 21 - Prob. 27EAPCh. 21 - Prob. 28EAPCh. 21 - Prob. 29EAPCh. 21 - Prob. 30EAPCh. 21 - Prob. 31EAPCh. 21 - Prob. 32EAPCh. 21 - Prob. 34EAPCh. 21 - Prob. 36EAPCh. 21 - Life Story of a Spiral. Imagine that you are a...Ch. 21 - Prob. 39EAPCh. 21 - Prob. 40EAPCh. 21 - Prob. 41EAPCh. 21 - Prob. 42EAPCh. 21 - Prob. 43EAPCh. 21 - Prob. 44EAPCh. 21 - Prob. 45EAPCh. 21 - Prob. 46EAPCh. 21 - Prob. 47EAPCh. 21 - A Nearby Starburst. The galaxy M82, shown in...Ch. 21 - Prob. 49EAPCh. 21 - Prob. 50EAPCh. 21 - Prob. 51EAPCh. 21 - Prob. 52EAPCh. 21 - Prob. 53EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Astronomy Question: Read the questions slowly and answer with precise and long details about each of the questions. Answer correctly and follow my guidelines for a long and wonderful review after results. Your target/main observable galaxy is the whirlpool galaxy. Target: Whirlpool Galaxy Object Type: Galaxy Distance: 37 million light-years Constellation: Canes VenaticiDO NOT COPY AND PASTE OTHER WORK OR THINGS FROM THE INTERNET, use your own words. Provide refernces if used In 500 words, please explain the relevance of this object to the physics course material in university andits importance to astronomy. (Some question you may seek to answer are: What beyond the objectitself is learned by studying this class of objects? What sorts of telescopes and observations would beneeded for more detailed, broader reaching studies of this source and objects of its nature?)arrow_forwardWhat happens when galaxies collide? A. Star collisions will be rare but the shapes of the galaxies will be largely distorted. B. The shapes of the galaxies will be largely distorted and many of the stars of one galaxy will collide with stars of the other galaxy. C. The shapes of the galaxies will be distorted and many stars will collide with stars of the other galaxy, as well as with other stars in the same galaxy. D. Star collisions will be rare and the two galaxies will just pass through each other without any changes. Is the answer A? Thank you!arrow_forwardEstimating the mass of the Milky Way a) Assuming the Sun moves in a circular orbit of radius 8 kiloparsecs around the center of the Milky Way, and that its orbital speed is 220 km/s, calculate how many years it takes the Sun to complete one orbit of the Galaxy. Remember to convert kiloparsecs to kilometers. b) Using the modified form of Kepler's third law (introduced in Lecture 13, for measuring the combined masses of binary stars), R³ m+ M = estimate the mass of the Milky Way enclosed within 8 kpc (Sun's orbit radius). The mass of the Milky Way inside p² I the Sun's orbit can be represented as a single mass (M) located at its center, and the mass of the Sun (m) can be considered infinitesimally small compared to the Milky Way's (i.e., m < M). c) Is this estimate of the Milky Way's mass an upper or lower limit? Explain your reasoning.arrow_forward
- The Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass. 250 km s-1. Using Kepler's 3rd Law,arrow_forwardAn astronomer observed the motions of some galaxies. Based on his observations, he made the following statements. Which one of them is most likely to be false? Take Hubble's constant to be 67 km/s/Mpc. A. A galaxy observed to be moving away from us at a speed of 70 km/s is at a distance of about 1 Mpc from us. B. A galaxy observed to be moving away from us at a speed of 700 km/s is at a distance of about 10 Mpc from us. C. A galaxy observed to be moving away from us at a speed of 7000 km/s is at a distance of about 100 Mpc from us. D. A galaxy observed to be moving away from us at a speed of 70000 km/s is at a distance of about 1 Gpc from us. Is the answer D? Thank you!arrow_forwardAstronomers frequently say that "there are more stars in the universe than there are grains of sand on all the beaches on the earth". Given that a typical grain of sand is about 0.5 – 1.0 mm in diameter, estimate the number of grains of sand on all the earth's beaches. The diameter of the Earth is 12,742 km. a) About 1011 b) About 1016 c) About 1021. 6. Assume that a typical galaxy contains about 200 billion stars and that there are more than 150 billion galaxies in the known universe. Estimate the total number of stars in the universe. b) About 1022 a) About 1010 c) About 1016. 7. Compare the values of the number of grains of sand in all earth's beaches (from problem 5) with the number of stars in the universe (from problem 6) – which is greater? a) Number of sand grains b) number of stars c) they are about the same.arrow_forward
- Read the questions slowly and answer with precise and long details about each of the questions. Answer correctly and follow my guidelines for a long and wonderful review after results. Your target/main observable galaxy is the whirlpool galaxy. Target: Whirlpool Galaxy Object Type: Galaxy Distance: 37 million light-years Constellation: Canes VenaticiDO NOT COPY AND PASTE OTHER WORK OR THINGS FROM THE INTERNET, use your own words. In 500 words, compare and contrast the specific object to at least 2 other objects in its sourceclass (eg. if it's an isolated star, to different types of isolated stars). Explain both observational andphysical differences, as well as what the comparison teaches us about the source class in general.arrow_forwardAs we discussed, clouds are made of a great many small drops. Really - a great many. Imagine a liquid cloud that fills a volume of 1 km3. The clouds contains 100 drops per cubic centimeter; for the sake of argument assume that each is 10 microns (micrometers) in radius. A. How many drops does the cloud contain? Compare this to a big number - say, the number of stars in the galaxy. B. What mass of water does the cloud contain? Compare this to something big - elephants, trucks, that sort of thing. C. What fraction of the cloud volume is filled with condensed water? One way to approach this is to compare the density of the suspended liquid water to the density of the surrounding air. D. How many 1 mm drizzle drops could you make from all the cloud drops? E. How much energy was released when this water condensed from vapor to liquid? If the water condensed in 20 minutes (a reasonable lifetime for a small cloud), what was the (energy per time)? powerarrow_forwardHow astronomers determine the distance of a galaxy? Explain.arrow_forward
- Astronomers now think that there is a black hole with more than 4 milliion times the mass of our Sun at the center of our galaxy? Roughly how large would the event horizon of such a supermassive black hole be? a. the size of our moon b. about 4 light years across c. about 17 times the size of our sun d. about the size of an atom (so much mass really compresses the event horizon) e. this question can't be answered without knowing what kind of stars were swallowed by the black holearrow_forwardIndicate whether the following statements are most true for elliptical or spiral galaxies. (Select S-Spiral, E-Elliptical. If the first is S and the rest E, enter SEEEEE). A) Are more bluish in color. B) Has no current star formation. C) Most numerous type in the Universe. D) Contain abundant clouds of cool gas and dust. E) Are rare in the central regions of galaxy clusters. F) Contain no hot, massive stars. G) Most are roughly similar in size and mass.arrow_forwardHow the Hubble law allows you to estimate the distances to galaxies? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning