Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 35Q
To determine
Why the time interval between pulses from pulsar is large when the stars are close and the time interval is small when it is far away. Also, explain how it is related to gravitational slowing of time. Given that distance between two neutron stars in a binary system discovered by Hulse and Taylor varies from 1.1 to 4.8 times the radius of the sun.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
From the light and velocity curves of an eclipsing spectroscopic binary star system, it is
determined that the orbital period is 6.31 yr and the maximum radial velocities of stars A and B
are 5.4 km/s and 22.4 km/s, respectively. Furthermore, the time period between first contact
and minimum light (tp-ta) is 0.58 d and the length of the primary minimum (tc-tb) is 0.64 d. From
this information, assuming circular orbits, find:
a) the ratio of stellar masses.
b) the sum of masses (i ~ 90°).
c) the individual masses.
d) the individual radii.
velocity curve for a double line
spectroscopic binary is shown in the sketch.
The system is viewed edge-on, i.e., with an
inclination angle of i 90°, so that the
maximum possible Doppler shifts for this
system are observed.
400
SPo
= , Ain i
300
200
l0o = v Ain i
100
-100
-200
-300
400
0 1 2 3 4
10
Time (days)
Find the speed of star 2 in km/s.
Doppler Velocity
(2esu)
A star has initially a radius of 660000000 m and a period of rotation about its axis of 34
days. Eventually it changes into a neutron star with a radius of only 35000 m and a period of
0.2 s. Assuming that the mass has not changed, find
Assume a star has the shape of a sphere.
(Suggestion: do it with formula first, then put the numbers in)
[Recommended time : 5-8 minutes]
(a) the ratio of initial to final angular momentum (Li/Lf)
Oa. 5.22E+15
Ob. 24.2
Oc. 0.0413
Od. 1.91E-16
(b) the ratio of initial to final kinetic energy
Oa. 1.3E-23
Activate V
Go to Setting
Ob. 607000
Oc. 1.65E-6
e here to search
Chapter 21 Solutions
Universe
Ch. 21 - Prob. 1CCCh. 21 - Prob. 2CCCh. 21 - Prob. 3CCCh. 21 - Prob. 4CCCh. 21 - Prob. 5CCCh. 21 - Prob. 6CCCh. 21 - Prob. 7CCCh. 21 - Prob. 8CCCh. 21 - Prob. 9CCCh. 21 - Prob. 10CC
Ch. 21 - Prob. 11CCCh. 21 - Prob. 12CCCh. 21 - Prob. 13CCCh. 21 - Prob. 14CCCh. 21 - Prob. 15CCCh. 21 - Prob. 16CCCh. 21 - Prob. 17CCCh. 21 - Prob. 18CCCh. 21 - Prob. 19CCCh. 21 - Prob. 20CCCh. 21 - Prob. 21CCCh. 21 - Prob. 1QCh. 21 - Prob. 2QCh. 21 - Prob. 3QCh. 21 - Prob. 4QCh. 21 - Prob. 5QCh. 21 - Prob. 6QCh. 21 - Prob. 7QCh. 21 - Prob. 8QCh. 21 - Prob. 9QCh. 21 - Prob. 10QCh. 21 - Prob. 11QCh. 21 - Prob. 12QCh. 21 - Prob. 13QCh. 21 - Prob. 14QCh. 21 - Prob. 15QCh. 21 - Prob. 16QCh. 21 - Prob. 17QCh. 21 - Prob. 18QCh. 21 - Prob. 19QCh. 21 - Prob. 20QCh. 21 - Prob. 21QCh. 21 - Prob. 22QCh. 21 - Prob. 23QCh. 21 - Prob. 24QCh. 21 - Prob. 25QCh. 21 - Prob. 26QCh. 21 - Prob. 27QCh. 21 - Prob. 28QCh. 21 - Prob. 29QCh. 21 - Prob. 30QCh. 21 - Prob. 31QCh. 21 - Prob. 32QCh. 21 - Prob. 33QCh. 21 - Prob. 34QCh. 21 - Prob. 35QCh. 21 - Prob. 36QCh. 21 - Prob. 37QCh. 21 - Prob. 38QCh. 21 - Prob. 39QCh. 21 - Prob. 40QCh. 21 - Prob. 41QCh. 21 - Prob. 42QCh. 21 - Prob. 43QCh. 21 - Prob. 44QCh. 21 - Prob. 45QCh. 21 - Prob. 46QCh. 21 - Prob. 47QCh. 21 - Prob. 48QCh. 21 - Prob. 49QCh. 21 - Prob. 50QCh. 21 - Prob. 51QCh. 21 - Prob. 52QCh. 21 - Prob. 53QCh. 21 - Prob. 54QCh. 21 - Prob. 55QCh. 21 - Prob. 56QCh. 21 - Prob. 57QCh. 21 - Prob. 58QCh. 21 - Prob. 59QCh. 21 - Prob. 60QCh. 21 - Prob. 61QCh. 21 - Prob. 62QCh. 21 - Prob. 63QCh. 21 - Prob. 64QCh. 21 - Prob. 65QCh. 21 - Prob. 66QCh. 21 - Prob. 67QCh. 21 - Prob. 68QCh. 21 - Prob. 69QCh. 21 - Prob. 70QCh. 21 - Prob. 71QCh. 21 - Prob. 72QCh. 21 - Prob. 73QCh. 21 - Prob. 74QCh. 21 - Prob. 75QCh. 21 - Prob. 85QCh. 21 - Prob. 86Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Plasketts binary system consists of two stars that revolve in a circular orbit about a center of mass midway between them. This statement implies that the masses of the two stars are equal (Fig. P11.19). Assume the orbital speed of each star is |v|=220km/s and the orbital period of each is 14.4 days. Find the mass M of each star. (For comparison, the mass of our Sun is 1.99 1030 kg.)arrow_forwardA star has initially a radius of 640000000 m and a period of rotation about its axis of 20 days. Eventually it changes into a neutron star with a radius of only 50000 m and a period of 0.2 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) Oa. 1.42E+15 Ob. 19 Oc. 0.0527 Od. 7.06E-16 (b) the ratio of initial to final kinetic energy Oa. 8.18E-23 Ob. 456000 Oc. 2.19E-6 Od. 1.22E+22 52%arrow_forwardA visual binary has a parallax of 0.4 arcseconds, a maximum separation a = 6.0 arcseconds, and an orbital period P = 80 years. What is the total mass of the binary system in units of Mo, assuming a circular orbit?arrow_forward
- A star has initially a radius of 780000000 m and a period of rotation about its axis of 22 days. Eventually it changes into a neutron star with a radius of only 25000 m and a period of 0.1 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) a. 1.85E+16 b. 51.2 c. 0.0195 d. 5.4E-17 (b) the ratio of initial to final kinetic energy a. 2.84E-24 b. 371000 c. 2.69E-6 d. 3.52E+23arrow_forwardA star has initially a radius of 680000000 m and a period of rotation about its axis of 26 days. Eventually it changes into a neutron star with a radius of only 40000 m and a period of 0.2 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) Oa. 3.25E+15 Ob. 25.7 Oc. 0.0389 Od. 3.08E-16 (b) the ratio of initial to final kinetic energy Oa. 2.74E-23 Ob. 437000 Cc. 2.29E-6 FUJITSUarrow_forwardProblem Set on Binary Systems: 1.Consider two stars in orbit about a mutual center of mass. If a1 is the semimajor axis of the orbit of star of mass m, and a, is the semimajor axis of the orbit of star of mass m2, prove that the semimajor axis of the orbit of the reduced mass is given by a = a, + a2. points)arrow_forward
- The velocity curve for a double spectroscopic binary is shown in the sketch. The system is viewed edge-on, i.e., with an inclination angle of i = 90°, so that the maximum possible Doppler shifts for this system are observed. line 400 So = U, Ani 300 200 loo = v Ain i 100 -100 -200 -300 400 • 1 2 3 • s 7 a 10 Time (days) Find the mass of star 1, mı, in terms of solar masses. 1 solar mass = 2x1030kg Round your answer to three significant figures. Doppler Velocity (20su)arrow_forwardTime left 1:45:56 A star has initially a radius of 680000000 m and a period of rotation about its axis of 33 days. Eventually it changes into a neutron star with a radius of only 45000 m and a period of 0.3 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) Oa. 2.17E+15 Ob. 24 Oc. 0.0416 Od. 4.61E-16 (b) the ratio of initial to final kinetic energy Oa. 4.85E-23 Ob. 396000 Oc. 2.53E-6 Od. 2.06E+22arrow_forwardAn astronomical image shows two objects that have the same apparent magnitude, i.e., the same brightness. However, spectroscopic follow up observations indicate that while one is a star that is within our galaxy, at a distance dgal away, and has the same luminosity as the Sun, the other is a quasar and has 100x the luminosity of the entire Milky Way galaxy. What is the distance to the quasar? (You may assume, for this rough calculation, that the Milky Way has 1011 stars and that they all have the luminosity as the Sun.) Give your response in Mpc. Value: dgal = 49 pcarrow_forward
- a double line The velocity curve for spectroscopic binary is shown in the sketch. The system is viewed edge-on, i.e., with an inclination angle of i = 90°, so that the maximum possible Doppler shifts for this system are observed. 400 U, Aini 300 200 oo - v Ain i 100 -100 -200 -300 400 o 1 2 3 +s 7 8 10 Time (daye) Find the orbital period of this binary in days. Doppler Velocity (2esun)arrow_forwardvelocity curve for a double line spectroscopic binary is shown in the sketch. The system is viewed edge-on, i.e., with an inclination angle of i = 90°, so that the maximum possible Doppler shifts for this system are observed. 400 300 So = U, Ani 200 t0 = v Ain i 100 -100 -200 -300 400 O 1 2 3 1 s 1 8: 10 Time (days) Find the orbital period of this binary in days. Doppler Velocity (krn/sec)arrow_forwardThe star HD 69830's mass is 1.7 ✕ 1030 kg, its radius is 6.3 ✕ 105 km, and it has a rotational period of approximately 35 days. If HD 69830 should collapse into a white dwarf of radius 7.8 ✕ 103 km, what would its period (in s) be if no mass were ejected and a sphere of uniform density can model HD 69830 both before and after?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning