College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Question
Chapter 20, Problem 30CQ
To determine
ToDescribe:
The function of the Coulomb force and the Concentration gradient present in the cell.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Question 14
Question 4 of 10
Question 4: You are charged with designing an
artificial organ that requires all of its cells to
communicate with one another effectively for
proper functioning. What type of cell junction
should you include when designing such an
organ?
An unmyelinated segment of the axon has a radius of r=2 pm and a
length of L=7 cm. what is its membrane capacitance (Farad) ?. (The
%3D
capacitance per unit area, Cm = 0.01 F/m2).
%3D
A. 0.000000008792
B. None,
C. 0.00000002638
D. 0.00000003517
E. 0.00000001758
Chapter 20 Solutions
College Physics
Ch. 20 - Can a wire carry a current and still be...Ch. 20 - Car batteries are rated in ampere-hours (A h )....Ch. 20 - If two different wires having identical...Ch. 20 - Why are two conducting paths from a voltage source...Ch. 20 - In cars, one battery terminal is connected to the...Ch. 20 - Why isn't a bird sitting on a high-voltage power...Ch. 20 - The IR drop across a resistor means that there is...Ch. 20 - How is the I R drop in a resistor similar to the...Ch. 20 - In which of the three semiconducting materials...Ch. 20 - Prob. 10CQ
Ch. 20 - If aluminum and copper wires of the same length...Ch. 20 - Explain why R=R0(1 + a?T) for the temperature...Ch. 20 - Why do incandescent lightbulbs grow dim late in...Ch. 20 - The power dissipated in a resistor is given by P =...Ch. 20 - Give an example of a use of AC power other than in...Ch. 20 - Why do voltage, current, and power go through zero...Ch. 20 - You are riding in a train, gazing into the...Ch. 20 - Using an ohmmeter, a student measures the...Ch. 20 - What are the two major hazards of electricity?Ch. 20 - Why isn’t a short circuit a shock hazard?Ch. 20 - What determines the severity of a shock? Can you...Ch. 20 - An electrified needle is used to burn off warts,...Ch. 20 - Some surgery is performed with high-voltage...Ch. 20 - Some devices often used in bathrooms, such as...Ch. 20 - We are often advised to not flick electric...Ch. 20 - Before working on a power transmission line,...Ch. 20 - Why is the resistance of wet skin so much smaller...Ch. 20 - Could a person on intravenous infusion (an IV) be...Ch. 20 - In view of the small currents that cause shock...Ch. 20 - Prob. 30CQCh. 20 - Define depolarization, repolarization, and the...Ch. 20 - Explain the properties of myelinated nerves in...Ch. 20 - What is the current in milliamperes produced by...Ch. 20 - A total of 600 C of charge passes through a...Ch. 20 - What is the current when a typical static charge...Ch. 20 - Find the current when 2.00 nC jumps between your...Ch. 20 - A large lightning bolt had a 20,000-A current and...Ch. 20 - The 200-A current through a spark plug moves 0.300...Ch. 20 - Prob. 7PECh. 20 - During open-heart surgery, a defibrillator can be...Ch. 20 - (a) A defibrillator passes 12.0 A of current...Ch. 20 - A clock battery wears out after moving 10,000 C of...Ch. 20 - The batteries of a submerged non-nuclear submarine...Ch. 20 - Electron guns are used in X-ray tubes. The...Ch. 20 - A large cyclotron directs a beam of He ++ nuclei...Ch. 20 - Repeat the above example on Example 20.3, but for...Ch. 20 - Using the results of the above example on Example...Ch. 20 - A 14-gauge copper wire has a diameter of 1.628 mm....Ch. 20 - Prob. 17PECh. 20 - What current flows through the bulb of a 3.00-V...Ch. 20 - Calculate the effective resistance of a pocket...Ch. 20 - What is the effective resistance of a car’s...Ch. 20 - How many volts are supplied to operate an...Ch. 20 - (a) F ind the voltage drop in an extension cord...Ch. 20 - A power transmission line is hung from metal...Ch. 20 - What is the resistance of a 20.0-m-long piece of...Ch. 20 - The diameter of 0-gauge copper wire is 8.252 mm....Ch. 20 - If the 0.100-mm diameter tungsten filament in a...Ch. 20 - Find the ratio of the diameter of aluminum to...Ch. 20 - What current flows through a 2.54-cm-diameter rod...Ch. 20 - (a) To what temperature must you raise a copper...Ch. 20 - A resistor made of Nichrome wire is used in an...Ch. 20 - Of what material is a resistor made if its...Ch. 20 - An electronic device designed to operate at any...Ch. 20 - a) Of what material is a wire made, if it is 25.0...Ch. 20 - Assuming a constant temperature coefficient of...Ch. 20 - A wire is drawn through a die, stretching it to...Ch. 20 - A copper wire has a resistance of 0.500at 20.0°C,...Ch. 20 - (a) Digital medical thermometers determine...Ch. 20 - Integrated Concepts (a) Redo Exercise 20.25 taking...Ch. 20 - Unreasonable Results (a) To what temperature must...Ch. 20 - What is the power of a 1.00 102 MV lightning boit...Ch. 20 - What power is supplied to the starter motor of a...Ch. 20 - Prob. 42PECh. 20 - How many watts does a flashlight that has 6.00102C...Ch. 20 - Find the power dissipated in each of these...Ch. 20 - Verify that the units of a volt-ampere are watts,...Ch. 20 - Show that the units 1 V2/=1W , as implied by the...Ch. 20 - Show that the units 1 A 2 = 1W, as implied by the...Ch. 20 - Verify the energy unit equivalence that 1 kWh =...Ch. 20 - Electrons in an X-ray tube are accelerated through...Ch. 20 - Prob. 50PECh. 20 - With a 1200-W toaster, how much electrical energy...Ch. 20 - What would be the maximum cost of a CFL such that...Ch. 20 - Some makes of older cars have 6.00-V electrical...Ch. 20 - Alkaline batteries have the advantage of putting...Ch. 20 - A cauterizer, used to stop bleeding in surgery,...Ch. 20 - The average television is said to be on 6 hours...Ch. 20 - An old lightbulb draws only 50.0 W, rather than...Ch. 20 - -gauge copper wire has a diameter of 9.266 mm....Ch. 20 - Prob. 59PECh. 20 - Integrated Concepts (a) What energy is dissipated...Ch. 20 - Integrated Concepts What current must be produced...Ch. 20 - Integrated Concepts How much time is needed for a...Ch. 20 - Prob. 63PECh. 20 - Prob. 64PECh. 20 - Integrated Concepts A light-rail commuter train...Ch. 20 - Integrated Concepts (a) An aluminum power...Ch. 20 - Integrated Concepts (a) An immersion heater...Ch. 20 - Integrated Concepts (a) What is the cost of...Ch. 20 - Unreasonable Results (a) What current is needed to...Ch. 20 - Unreasonable Results (a) What current is needed to...Ch. 20 - Construct Your Own Problem Consider an electric...Ch. 20 - (a) What is the hot resistance of a 25-W light...Ch. 20 - Certain heavy industrial equipment uses AC power...Ch. 20 - A certain circuit breaker trips when the rms...Ch. 20 - Military aircraft use 400-Hz AC power, because it...Ch. 20 - A North American tourist takes his 25.0-W, 120-V...Ch. 20 - In this problem, you will verify statements made...Ch. 20 - A small office-building air conditioner operates...Ch. 20 - What is the peak power consumption of a 12G-V AC...Ch. 20 - What is the peak current through a 500-W room...Ch. 20 - Two different electrical devices have the same...Ch. 20 - Nichrome wire is used in some radiative heaters....Ch. 20 - Find the time after t = 0 when the instantaneous...Ch. 20 - (a) At what two times in the first period...Ch. 20 - (a) Haw much power is dissipated in a short...Ch. 20 - What voltage is involved in a 1.44-kW short...Ch. 20 - Find the current through a person and identify the...Ch. 20 - While taking a bath, a person touches the metal...Ch. 20 - Foolishly trying to fish a burning piece of bread...Ch. 20 - (a) During surgery, a current as small as 20.0 ?...Ch. 20 - (a) What is the resistance of a 220-V AC short...Ch. 20 - A heart defibrillator passes 10.0 A through a...Ch. 20 - Integrated Concepts A short circuit in a 120-V...Ch. 20 - Construct Your Own Problem Consider a person...Ch. 20 - Prob. 95PECh. 20 - Prob. 96PECh. 20 - Prob. 1TPCh. 20 - Prob. 2TPCh. 20 - Prob. 3TPCh. 20 - Prob. 4TPCh. 20 - Prob. 5TPCh. 20 - Prob. 6TPCh. 20 - Prob. 7TPCh. 20 - Prob. 8TPCh. 20 - Prob. 9TPCh. 20 - Prob. 10TPCh. 20 - Prob. 11TPCh. 20 - Prob. 12TPCh. 20 - Prob. 13TPCh. 20 - Prob. 14TPCh. 20 - Prob. 15TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Note that in Figure 20.28, both the concentration gradient and the Coulomb force tend to move Na+ ions into the cell. What prevents this? Figure 20.28 The semipermeable membrane of a cell has different concentrations of ions inside and out. Diffusion moves the K+ and Cl ions in the direction shown, until the Coulomb force halts further transfer. This results in a layer of positive charge on the outside, a layer of negative charge on the inside, and thus a voltage across the cell membrane. The membrane is normally impermeable to Na+.arrow_forwardPlease help. The nonpolar core of the membrane of a muscle cell has a thickness d = 4nm and a dielectric constancy k = 20. (a) What is the surface capacity of the membrane? Express your response in microcoulombs per square centimeter. (b) During muscle contraction, the internal potential of the cell increases by about 100 mV. For 1 cm2 of membrane, how many Na+ ions must have entered the cell for this purpose? (c) The medium outside the cell initially contains 0.150 mol / L of Na + ions in solution. Considering that it extends to 1 µm from the cell, what is the decrease in Na+ concentration immediately after the change in potential? (d) Estimate the number of times the process can be repeated before the Na+ ion reserve is exhausted. Please show formulas ans steps for my own understandingarrow_forwardAssume the axon had a diameter of 30 um and was 5 cm long. The capacitance of this axon would bearrow_forward
- Assume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed x pulse duration equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = K² A/d and Q radius r = 1.6 × 10¹ μm, and cell-wall dielectric constant x = 2.9. = Positive charge layer Negative charge layer + External fluid Axon wall membrane No Axon radius = r + Internal fluid + How many sodium ions (Na+) is this? Na+ ions d + (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. (Assume an initial potential difference of 7.0 × 10-² V.) -2 9.03E-10 C How many K+ ions are on the outside of the axon assuming an initial potential difference of 7.0 × 10-² V? 5.639E9 K+ ions = 50.0 m/s X 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall CAV to investigate the…arrow_forwardItem 13 Cell Membranes and Dielectrics Many cells in the body have a cell membrane whose inner and outer surfaces carry opposite charges, just like the plates of a parallel-plate capacitor. Suppose a typical cell membrane has a thickness of 8.5x109 m, and its inner and outer surfaces carry charge densities of -6.4×10-4 C/m² and +6.4×10-4 C/m², respectively. In addition, assume that the material in the cell membrane has a dielectric constant of 5.4. Part A Find the direction of the electric field within the cell membrane. into the cell O out of the cell Submit Part B E = Find the magnitude of the electric field within the cell membrane. Express your answer using two significant figures. —| ΑΣΦ Submit Part C Request Answer |AV| = Submit Request Answer Calculate the potential difference between the inner and outer walls of the membrane. Express your answer using two significant figures. 17 ΑΣΦ # ? Request Answer N/C ? mVarrow_forwardSelect all junctions.arrow_forward
- In a typical mammalian cell, the net transport by the sodiumpotassium exchange pump that maintains the 70 mV membrane potential is 500 singly charged ions per second. How much work does the pump do each second?arrow_forwardHow many actin monomers within an actin filament would a myosin molecule need to ratchet in order to contract a cell by approximately 1 μm? How fast could a non-muscle cell make this contraction compared to a muscle cell if the relative rates of myosin walks on F-actin are 4.5 μm/sec and 0.04 μm/sec for myosin II and I respectively?arrow_forwardWhat is the resistance of a 2.0 - mm long axon?arrow_forward
- Their clothes tend to stick together after they pass through the dryer. Because? Do you expect that, on drying, assuming that all clothes are made of the same material (say, cotton), the agglutination will be higher or lower than in the case of clothes made with different materials? Because? (You may want to do the experiment the next time you do laundry.)arrow_forwardSaccharomyces cerevisiae is a single-celled yeast that is often used as a model for eukaryotic cells, as it contains all of the important organelles of these cells. The genome of Saccharomyces cerevisiae, commonly known as brewer's yeast, has been completely mapped, making it suitable for genetic engineering experiments. The amount of electric charge on the cell walls plays a significant role in the interaction of these cells with their environment. To determine -9 the electric charge on yeast cells, which is a function of their size, the cells are often placed in electric fields and their motion in these fields is measured. In one such experiment, Saccharomyces cells of mass 3.00 x 10- 9 placed at rest in a uniform electric field of magnitude 10.0 N/C were measured to be traveling with a speed of 3.10 x 102 um/s after traversing a distance of 20.0 μm along the direction of the electric field. What was the magnitude and sign of the charge on this batch of yeast cells? (a) magnitude (in…arrow_forwardSaccharomyces cerevisiae is a single-celled yeast that is often used as a model for eukaryotic cells, as it contains all of the important organelles of these cells. The genome of Saccharomyces cerevisiae, commonly known as brewer's yeast, has been completely mapped, making it suitable for genetic engineering experiments. The amount of electric charge on the cell walls plays a significant role in the interaction of these cells with their environment. To determine the electric charge on yeast cells, which is a function of their size, the cells are often placed in electric fields and their motion in these fields is measured. In one such experiment, Saccharomyces cells of mass 3.00 x 10-⁹ g placed at rest in a uniform electric field of magnitude 10.0 N/C were measured to be traveling with a speed of 3.20 x 102 μm/s after traversing a distance of 12.0 μm along the direction of the electric field. What was the magnitude and sign of the charge on this batch of yeast cells? (a) magnitude (in…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY