Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 20, Problem 20.74AP
To determine
The reason for which the given situation is impossible.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Why is the following situation impossible? A group of campers arises at 8:30 a.m. and uses a solar cooker, which consists of a curved, reflecting surface that concentrates sunlight onto the object to be warmed (as shown). During the day, the maximum solar intensity reaching the Earth’s surface at the cooker’s location is I = 600 W/m2. The cooker faces the Sun and has a face diameter of d = 0.600 m. Assume a fraction f of 40.0% of the incident energy is transferred to 1.50 L of water in an open container, initially at 20.0°C. The water comes to a boil, and the campers enjoy hot coffee for breakfast before hiking ten miles and returning by noon for lunch.
A baking dish is removed from a hot oven and placed on a cooling rack. As the dish cools down to 31.0°C from 189°C, its net radiant power decreases to 13.0 W. What was the net radiant power of the baking dish when it was first removed from the oven? Assume that the temperature in the kitchen remains at 24.0°C as the dish cools.
A classroom has dimensions 8.00 m x 10.00 m x 3.00 m. A 1000 W electric space
heater is being used to warm the room from 5.00°C to 20.00°C on a cold morning. If
the density of air is 1.29 kg/m°, and the specific heat capacity of air is 1004 J/(kg-K),
how long will it take to heat the room? Assume no loss of thermal energy to the
surroundings.
A) 1.30 minutes
B) 241 minutes
C) 45.3 minutes
O D) 77.7 minutes
Chapter 20 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 20 - Prob. 20.1QQCh. 20 - Suppose the same process of adding energy to the...Ch. 20 - Prob. 20.3QQCh. 20 - Characterize the paths in Figure 19.12 as...Ch. 20 - Prob. 20.5QQCh. 20 - An ideal gas is compressed to half its initial...Ch. 20 - A poker is a stiff, nonflammable rod used to push...Ch. 20 - Assume you are measuring the specific heat of a...Ch. 20 - Prob. 20.4OQCh. 20 - Prob. 20.5OQ
Ch. 20 - Ethyl alcohol has about one-half the specific heat...Ch. 20 - The specific heat of substance A is greater than...Ch. 20 - Beryllium has roughly one-half the specific heat...Ch. 20 - Prob. 20.9OQCh. 20 - A 100-g piece of copper, initially at 95.0C, is...Ch. 20 - Prob. 20.11OQCh. 20 - If a gas is compressed isothermally, which of the...Ch. 20 - Prob. 20.13OQCh. 20 - If a gas undergoes an isobaric process, which of...Ch. 20 - Prob. 20.15OQCh. 20 - Prob. 20.1CQCh. 20 - You need to pick up a very hot cooking pot in your...Ch. 20 - Prob. 20.3CQCh. 20 - Prob. 20.4CQCh. 20 - Prob. 20.5CQCh. 20 - In 1801, Humphry Davy rubbed together pieces of...Ch. 20 - Prob. 20.7CQCh. 20 - Prob. 20.8CQCh. 20 - Prob. 20.9CQCh. 20 - When camping in a canyon on a still night, a...Ch. 20 - Pioneers stored fruits and vegetables in...Ch. 20 - Prob. 20.12CQCh. 20 - Prob. 20.1PCh. 20 - Consider Joules apparatus described in Figure...Ch. 20 - Prob. 20.3PCh. 20 - The highest waterfall in the world is the Salto...Ch. 20 - What mass of water at 25.0C must be allowed to...Ch. 20 - The temperature of a silver bar rises by 10.0C...Ch. 20 - In cold climates, including the northern United...Ch. 20 - A 50.0-g sample of copper is at 25.0C. If 1 200 J...Ch. 20 - An aluminum cup of mass 200 g contains 800 g of...Ch. 20 - If water with a mass mk at temperature Tk is...Ch. 20 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 20 - An electric drill with a steel drill bit of mass m...Ch. 20 - An aluminum calorimeter with a mass of 100 g...Ch. 20 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 20 - Two thermally insulated vessels are connected by a...Ch. 20 - A 50.0-g copper calorimeter contains 250 g of...Ch. 20 - Prob. 20.17PCh. 20 - How much energy is required to change a 40.0-g ice...Ch. 20 - A 75.0-g ice cube at 0C is placed in 825 g of...Ch. 20 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 20 - Steam at 100C is added to ice at 0C. (a) Find the...Ch. 20 - A 1.00-kg Mock of copper at 20.0C is dropped into...Ch. 20 - In an insulated vessel, 250 g of ice at 0C is...Ch. 20 - Prob. 20.24PCh. 20 - An ideal gas is enclosed in a cylinder with a...Ch. 20 - Prob. 20.26PCh. 20 - One mole of an ideal gas is warmed slowly so that...Ch. 20 - (a) Determine the work done on a gas that expands...Ch. 20 - An ideal gas is taken through a quasi-static...Ch. 20 - A gas is taken through the cyclic process...Ch. 20 - Consider the cyclic process depicted in Figure...Ch. 20 - Why is the following situation impossible? An...Ch. 20 - A thermodynamic system undergoes a process in...Ch. 20 - A sample of an ideal gas goes through the process...Ch. 20 - A 2.00-mol sample of helium gas initially at 300...Ch. 20 - (a) How much work is done on the steam when 1.00...Ch. 20 - Prob. 20.37PCh. 20 - One mole of an ideal gas does 3 000 J of work on...Ch. 20 - A 1.00-kg block of aluminum is warmed at...Ch. 20 - In Figure P19.22, the change in internal energy of...Ch. 20 - An ideal gas initially at Pi, Vi, and Ti is taken...Ch. 20 - An ideal gas initially at Pi, Vi, and Ti is taken...Ch. 20 - A glass windowpane in a home is 0.620 cm thick and...Ch. 20 - A concrete slab is 12.0 cm thick and has an area...Ch. 20 - A student is trying to decide what to wear. His...Ch. 20 - The surface of the Sun has a temperature of about...Ch. 20 - The tungsten filament of a certain 100-W lightbulb...Ch. 20 - At high noon, the Sun delivers 1 000 W to each...Ch. 20 - Two lightbulbs have cylindrical filaments much...Ch. 20 - Prob. 20.50PCh. 20 - A copper rod and an aluminum rod of equal diameter...Ch. 20 - A box with a total surface area of 1.20 m2 and a...Ch. 20 - (a) Calculate the R-value of a thermal window made...Ch. 20 - At our distance from the Sun, the intensity of...Ch. 20 - A bar of gold (Au) is in thermal contact with a...Ch. 20 - Prob. 20.56PCh. 20 - Prob. 20.57PCh. 20 - A gas expands from I to Fin Figure P20.58 (page...Ch. 20 - Gas in a container is at a pressure of 1.50 atm...Ch. 20 - Liquid nitrogen has a boiling point of 77.3 K and...Ch. 20 - An aluminum rod 0.500 m in length and with a cross...Ch. 20 - Prob. 20.62APCh. 20 - Prob. 20.63APCh. 20 - Prob. 20.64APCh. 20 - Prob. 20.65APCh. 20 - An ice-cube tray is filled with 75.0 g of water....Ch. 20 - On a cold winter day. you buy roasted chestnuts...Ch. 20 - Prob. 20.68APCh. 20 - An iron plate is held against an iron wheel so...Ch. 20 - Prob. 20.70APCh. 20 - A 40.0-g ice cube floats in 200 g of water in a...Ch. 20 - One mole of an ideal gas is contained in a...Ch. 20 - Review. A 670-kg meteoroid happens to be composed...Ch. 20 - Prob. 20.74APCh. 20 - Prob. 20.75APCh. 20 - Prob. 20.76APCh. 20 - Water in an electric teakettle is boiling. The...Ch. 20 - Prob. 20.78APCh. 20 - Prob. 20.79APCh. 20 - A student measures the following data in a...Ch. 20 - Consider the piston cylinder apparatus shown in...Ch. 20 - A spherical shell has inner radius 3.00 cm and...Ch. 20 - Prob. 20.83CPCh. 20 - (a) The inside of a hollow cylinder is maintained...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A family comes home from a long vacation with laundry to do and showers to take. The water heater has been turned off during vacation. If the water heater has a capacity of 51.3 gallons and a 4940 W heating element, how much time is required to raise the temperature of the water from 19.4°C to 63.3°C? Assume that the heater is well insulated and no water is withdrawn from the tank during this time.arrow_forwardA student is trying to decide what to wear.His bedroom is at 20.0 degrees Celcius.His skin Temperature is 25 degrees Celsius.The area of his exposed skin is 1.50 square mitres.People all over the world have dark skin with emessivity about 0.900.Find the net energy transfer from his body by radiation in 10.0 minutesarrow_forwardThermal energy is being transferred through a 0.8 mm layer of human skin at a rate of 1.1 x 104 W/m2. The room temperature is 27 °C.To reduce heat flux, the skin is wrapped with a clothing material. What should be the thickness of the clothing material covering the surface of this skin tissue to reduce the heat flux to half of its original value? What is the temperature at the skin-clothing material interface? Note: if you think you need to have more information to solve this problem, you can make assumptions. Please state them clearly in your answer, if you need to make such assumptions.And please explain step by step to the answer to better understandingarrow_forward
- An electric coffeemaker has a 610-W heating element. The specific heat of water is 4.19 × 103 J/(kg⋅°C). How long, in seconds, does it take the coffeemaker to heat 0.76 L of water from 18°C to 88°C, assuming all the heat produced by the heating element goes into the water?arrow_forwardWhat is the rate of heat transfer by radiation, with an unclothed person standing in a dark room whose ambient temperature is 22.0C. The person has a normal skin temperature of 33.0C and a surface area of 1.50 m2. The emissivity of skin is 0.97 in the infrared, where the radiation takes place.arrow_forwardA family comes home from a long vacation with laundry to do and showers to take. The water heater has been turned offduring the vacation. If the heater has a capacity of 50.0 gallons and a 4 800-W heating element, how much time is required to raise the temperature of the water from 20.0°C to 60.0°C? Assume the heater is well insulated and no water is withdrawn from the tank during that time.arrow_forward
- A student is trying to decide what to wear. His bedroom is at 20°C. His skin temperature is 35°C. The area of his exposed skin is 1.50 m². People of all races have skin that is dark in the infrared, with emissivity about 0.900. Find the net energy loss from his body by radiation in 10.0 min.arrow_forwardA2.1-m-long, 0.2-cm-diameter electrical wire extends across a room that is maintained at 20°C. Heat is generated in the wire as a result of resistance heating, and the surface temperature of the wire is measured to be 180°C in steady operation. Also, the voltage drop and electric current through the wire are measured to be 110 V and 3 A, respectively. Disregarding any heat transfer by radiation, determine the convection heat transfer coefficient for heat transfer between the outer surface of the wire and the air in the room.arrow_forwardYou recently bought an aluminum (C = 0.9 J/g-K) kettle with a mass of 2 kg. You used the kettle to heat water (C = 4.184 J/g-K). The kettle contains water (1.5 kg). The kettle was heated using an induction stove from 20°C to 85°C. The water is then used for coffee. If no heat is lost to the surroundings, what is the total heat added to raise the temperature?arrow_forward
- A bulb delivers 33 W of radiant energy when its filament is at 1900 °C . If the temperature increases by 100 °C , what is the new rate of energy radiated by this bulb? O 39.51 W 36.11 W O 27.56 W O 40.52 Warrow_forwardThe filament in a light bulb has a diameter of 0.02 mm and an emissivity of 1.0. The temperature of the filament is 3×1000°C. What should be the length of the filament in meters so it will radiate 60 W of power? The Stefan-Boltzmann constant is 5.670 × 10-8 W/m2 · K4. Please give your answer with 3 decimal places.arrow_forwardA flat-plate solar collector is used to heat water by having water flow through tubes attached at the back of the thin solar absorber plate. The absorber plate has a surface area of 2 m2 with emissivity and absorptivity of 0.9. The surface temperature of the absorber is 35°C, and solar radiation is incident on the absorber at 500 W/m2 with a surrounding temperature of 0°C. Convection heat transfer coefficient at the absorber surface is 5 W/m2∙K, while the ambient temperature is 25°C. Net heat rate absorbed by the solar collector heats the water from an inlet temperature (Tin) to an outlet temperature (Tout). If the water flow rate is 5 g/s with a specific heat of 4.2 kJ/kg∙K, determine the temperature rise of the water.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning