College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A concrete slab is 12.0 cm thick and has an area of 5.00 m2. Electric heating coils are installed under the slab to melt the ice on the surface in the winter months. What minimum power must be supplied to the coils to maintain a temperature difference of 20.0C between the bottom of the slab and its surface? Assume all the energy transferred is through the slab.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- While swimming, conduction can play a big role in heat loss from the body. The body of one swimmer has a total surface area of 1.80 m2 and an average thickness of 1.60 mm. The skin's thermal conductivity is 0.370 W/m-K. If the water's temperature is 20.0°C, and the blood reaching the inner surface of the skin is at 37.0°C, what is the rate of energy loss for that person through conduction?arrow_forwardThe figure shows the cross section of a wall made of three layers. The thicknesses of the layers are L1, L2 =0.650 L1, and L3 = 0.350 L1. The thermal conductivities are k1, k2 = 0.900 k1, and kg = 0.600 k1. The temperatures at the left and right sides of the wall are TH = 30 °C and Tc= -20 °C, respectively. Thermal conduction is steady. (a) What is the temperature difference AT2 across layer 2 (between the left and right sides of the layer)? If k2 were, instead, equal to 1.180 kg, (b) would the rate at which energy is conducted through the wall be greater than, less than, or the same as previously, and (c) what would be the value of AT2? k1 ko k3 TH TC L1 L2 L3 (a) AT2 = i (b) (c) AT2 = iarrow_forwardYou drop an ice cube into an insulated container full of water and wait for the ice cube to completely melt. The ice cube initially has a mass of 60.0 g and a temperature of 0°C. The water (before the ice cube is added) has a mass of 850 g and an initial temperature of 30.0°C. What is the final temperature (in °C) of the mixture? (Assume no energy is lost to the walls of the container, or to the environment.)arrow_forward
- A large steam pipe is covered with a 4.80 cm thick insulating material with a thermal conductivity of 0.17 W/(m°C). How much energy is lost every second when the temperature of the steam inside the pipe is at 265 °C and the temperature outside of the pipe is 13.0 °C? The pipe has a diameter of 3.70 m and a length of 185 m. Neglect losses through the ends of the pipe. 3863.3 Jarrow_forwardWhat is the rate of heat transfer in J/s through the body's skin and the fat layer just beneath its surface? Treat the skin and fat as a single layer that is 1.20 cm thick. Assume the temperature of the inner surface of the layer corresponds to internal body temperature, or 36.7 °C, and the temperature of the outer surface of the layer corresponds to skin temperature, or 34.0 °C. Take the total surface area of the layer to be 1.50 m² and use a value of 0.413 W/(m-C°) for the average thermal conductivity of the layer. Number Unitsarrow_forwardA Thermopane window of area 5 m² is con- structed of two layers of glass, each 4.4 mm thick separated by an air space of 3 mm. If the inside is at 11°C and the outside is at -24°C, what is the heat loss through the window? The thermal conductivity of glass is 0.8 W/m .° C and of air is 0.0234 W/m .° C. Answer in units of kW.arrow_forward
- @ 2 O: F2 W S 8. An electric immersion heater has a power rating of 1900 W. If the heater is placed in a 1.8 kg of water at 30 °C, how many minutes will it take to bring the water to a boiling temperature? (Assume that there is no heat loss except to the water itself. Cwater=4186 J/kg.°C) min # 3 X 80 F3 E D $ 4 C F4 R TI F or do % 5 V F5 T G > 6 MacBook Air B F6 < H 887 & ◄◄ F7 U N * 8 J DII F8 M ( 9 K F9 O ) C L F10 (4) P F11 31 + 11 F12 18 BEL ?arrow_forwardIce of mass 12.8 kg at 0°C is placed in an ice chest. The ice chest has 2.7 cm thick walls of thermal conductivity 0.07 W/m·K and a surface area of 1.29 m2. Express your answers with appropriate mks units. (a) How much heat must be absorbed by the ice during the melting process? (b) If the outer surface of the ice chest is at 39° C, how long will it take for the ice to melt?arrow_forwardAn aluminum cup with mass 0.34 kg holds 0.36 kg of water. Both the cup and the water have a temperature of 12.°C. If a 0.13-kg piece of copper at 62.°C is added to the cup, what is the final equilibrium temperature in °C? You may assume that the cup, water, and copper are well insulated from anything else.arrow_forward
- You drop an ice cube into an insulated flask full of water and wait for the ice cube to completely melt. The ice cube initially has a mass of 90.0 g and a temperature of 0°C. The water (before the ice cube is added) has a mass of 850 g and an initial temperature of 22.0°C. What is the final temperature (in °C) of the mixture? (Assume no energy is lost to the walls of the flask, or to the environment.) °Carrow_forwardA 50.0-g piece of brass (specific heat 380 J/kg K) is heated to 90.0° C and immersed in 100 g of water (specific heat 4184 J/kg K), initially at 15.0° C c. The well-insulated container is then sealed and allowed to reach thermal equilibrium. What is the final temperature of the system? 18.3° C 13.7° С 24.8° C 36.3° C 12.9° Carrow_forwardThe thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about 0.20 W/m · K and 0.020 W/m · K respectively, while other tissues inside the body have conductivities of about 0.50 W/m · K. Assume that between the core region of the body and the skin surface lies a skin layer of 1.0 mm, fat layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the R-factor for each of these layers, and the equivalent R-factor for all layers taken together, retaining two digits. Rskin m2 · K/W Rfat m2 · K/W Rtissue m2 · K/W R m2 · K/W (b) Find the rate of energy loss when the core temperature is 37°C and the exterior temperature is 0°C. Assume that both a protective layer of clothing and an insulating layer of unmoving air are absent, and a body area of 2.0 m2. Warrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON