Loose Leaf For Explorations:  Introduction To Astronomy
Loose Leaf For Explorations: Introduction To Astronomy
9th Edition
ISBN: 9781260432145
Author: Thomas T Arny, Stephen E Schneider Professor
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 6TQ

You may have noticed that although every 10 years or so there is a comet visible in the night sky, the same comet is rarely seen twice during a human lifetime. Use this fact and Kepler’s third law to deduce how the semimajor axis and shape of a typical comet’s orbit must compare to Earth’s orbit.

Blurred answer
Students have asked these similar questions
Saturn's mass is M= 5.69 x 1026 kg and its radius R=60,300 km. If a moon orbits Saturn at a distance equal to 5 times its planetary radius, what is its period of orbit? (Hint, use Newton's version of Kepler's 3rd law, and you can neglect the mass of the moon) Express your answer in days to three significant figures.
The mass of Jupiter is 1/1047 of the Sun's mass (that's 0.000955). We want to confirm this using Newton's version of Kepler's Third Law, following the examples in Lecture 7. We'll use the approximate data for two different moons of Jupiter to see how close the results are. Pick the closest answer in each case: (a) Ganymede is the third moon from the inside. It has an orbital period around Jupiter of approximately 0.0194 Earth years. Its semimajor axis is 0.0071 AU. Which of these comes closest to the mass of Jupiter (in solar masses) when using these data?       (b) Europa is the second moon from the inside. It has an orbital period around Jupiter of approximately 0.0096 Earth years. Its semimajor axis is 0.0045 AU. Which of these comes closest to the mass of Jupiter (in solar masses) when using these data?
Comet Halley has a semi-major axis of 17.7 AU. (The AU, or Astronomical Unit, is the distance from the Sun to the Earth. 1 AU = 1.50x1011 m.) The eccentricity of Comet Halley is 0.967. a. How far is Comet Halley from the sun at Aphelion, the farthest position from the sun? (Give your answer in AU.)? b. What is comet Halley's orbital time? (Give your answer in years.) Note: Using Kepler's third law in the form: P2 = a3 is convenient. This equation works for any object orbiting the sun when the orbital period is in years and the semi major axis is in AU. The reason this works is because this equation is normalized to earth. The AU and year are both 1 for Earth. c. In what year will Comet Halley start to move back toward the sun?

Chapter 2 Solutions

Loose Leaf For Explorations: Introduction To Astronomy

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY