Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 4FTD
Consider two possible definitions of average speed: (a) the average of the values of the instantaneous speed over a time interval and (b) the magnitude of the average velocity. Are these definitions equivalent? Give two examples to demonstrate your conclusion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How do I solve part b?
A polar bear starts at the North Pole. It travels 1.0 km south, then 1.0 km east, and then returns to its starting point. This trip takes 0.75 hr. a) What was the bear's average speed? b) What was the bear's average velocity?
Compute your Average velocity in the following two cases: (a) You walk 61.4 m at a speed of 2.47 m/s and then run 61.4 m at a speed of 3.34 m/s along a straight track. (B) You walk for 1 minute at a speed of 2.47 m/s and then run for 1.8 minutes at 3.34 m/s along a straight track
Chapter 2 Solutions
Essential University Physics (3rd Edition)
Ch. 2.1 - We just described three trips from Houston to Des...Ch. 2.2 - The figures show position-versus-time graphs for...Ch. 2.3 - An elevator is going up at constant speed, slows...Ch. 2.5 - Standing on a roof, you simultaneously throw one...Ch. 2.6 - The graph shows acceleration versus time for three...Ch. 2 - Under what conditions are average and...Ch. 2 - Does a speedometer measure speed or velocity?Ch. 2 - You check your odometer at the beginning of a days...Ch. 2 - Consider two possible definitions of average...Ch. 2 - Is it possible to be at position x = 0 and still...
Ch. 2 - Is it possible to have zero velocity and still be...Ch. 2 - If you know the initial velocity v0 and the...Ch. 2 - Starting from rest, an object undergoes...Ch. 2 - In which of the velocity-versus-time graphs shown...Ch. 2 - If you travel in a straight line at 50 km/h for 1...Ch. 2 - If you travel in a straight line at 50 km/h for 50...Ch. 2 - In 2009, Usain Bolt of Jamaica set a world record...Ch. 2 - The standard 26-mile, 385-yard marathon dates to...Ch. 2 - Starting front home, you bicycle 24 km north in...Ch. 2 - The Voyager 1 spacecraft is expected to continue...Ch. 2 - In 2008, Australian Emma Snowsill set an...Ch. 2 - Taking Earths orbit to be a circle of radius 1.5 ...Ch. 2 - Whats the conversion factor from meters per second...Ch. 2 - On a single graph, plot distance versus time for...Ch. 2 - For the motion plotted in Fig. 2.15, estimate (a)...Ch. 2 - A model rocket is launched straight upward. Its...Ch. 2 - A giant eruption on the Sun propels solar material...Ch. 2 - Starting from rest, a subway train first...Ch. 2 - A space shuttles main engines cut off 8.5 min...Ch. 2 - An egg drops from a second-story window, taking...Ch. 2 - An airplanes takeoff speed is 320 km/h. If its...Ch. 2 - ThrustSSC, the worlds first supersonic car,...Ch. 2 - Youre driving at 70 km/h when you apply constant...Ch. 2 - Prob. 29ECh. 2 - An X-ray tube gives electrons constant...Ch. 2 - A rocket rises with constant acceleration to an...Ch. 2 - Starting from rest, a car accelerates at a...Ch. 2 - A car moving initially at 50 mi/h begins slowing...Ch. 2 - In a medical X-ray tube, electrons are accelerated...Ch. 2 - Californias Bay Area Rapid Transit System (BART)...Ch. 2 - Youre driving at speed v0 when you spot a...Ch. 2 - You drop a rock into a deep well and 4.4 s later...Ch. 2 - Your friend is sitting 6.5 m above you on a tree...Ch. 2 - A model rocket leaves the ground, heading straight...Ch. 2 - A foul ball leaves the bat going straight up at 23...Ch. 2 - A Frisbee is lodged in a tree 6.5 m above the...Ch. 2 - Space pirates kidnap an earthling and hold him on...Ch. 2 - You allow 40 min to drive 25 mi to the airport,...Ch. 2 - A base runner can get from first to second base in...Ch. 2 - You can run 9.0 m/s, 20% faster than your brother....Ch. 2 - A jetliner leaves San Francisco for New York, 4600...Ch. 2 - An objects position is given by x = bt + ct3 where...Ch. 2 - An objects position as a function of time t is...Ch. 2 - In a drag race, the position of a car as a...Ch. 2 - Squaring Equation 2.7 gives an expression for v2....Ch. 2 - During the complicated sequence that landed the...Ch. 2 - The position of a car in a drag race is measured...Ch. 2 - A fireworks rocket explodes at a height of 82.0 m,...Ch. 2 - The muscles in a grasshoppers legs can propel the...Ch. 2 - On packed snow, computerized antilock brakes can...Ch. 2 - A particle leaves its initial position x0 at time...Ch. 2 - A hockey puck moving at 32 m/s slams through a...Ch. 2 - Amtraks 20th-Century Limited is en route from...Ch. 2 - A jetliner touches down at 220 km/h and comes to a...Ch. 2 - A motorist suddenly notices a stalled car and...Ch. 2 - A racing car undergoing constant acceleration...Ch. 2 - The maximum braking acceleration of a car on a dry...Ch. 2 - After 35 min of running, at the 9-km point in a...Ch. 2 - Youre speeding at 85 km/h when you notice that...Ch. 2 - Airbags cushioned the Mars rover Spirits landing,...Ch. 2 - Calculate the speed with which cesium atoms must...Ch. 2 - A falling object travels one-fourth of its total...Ch. 2 - Youre on a NASA team engineering a probe to land...Ch. 2 - Youre atop a building of height h, and a friend is...Ch. 2 - A castles defenders throw rocks down on their...Ch. 2 - Two divers jump from a 3.00-m platform. One jumps...Ch. 2 - A balloon is rising at 10 m/s when its passenger...Ch. 2 - Landing on the Moon, a spacecraft fires its...Ch. 2 - Youre at mission control for a rocket launch,...Ch. 2 - Youre an investigator for the National...Ch. 2 - You toss a book into your dorm room, just clearing...Ch. 2 - Consider an object traversing a distance L, part...Ch. 2 - A particles position as a function of time is...Ch. 2 - Ice skaters, ballet dancers, and basketball...Ch. 2 - Youre staring idly out your dorm window when you...Ch. 2 - A police radars effective range is 1.0 km, and...Ch. 2 - An object starts moving in a straight line from...Ch. 2 - Youre a consultant on a movie set, and the...Ch. 2 - (a) For the ball in Example 2.6, find its velocity...Ch. 2 - Your roommate is an aspiring novelist and asks...Ch. 2 - You and your roommate plot to drop water balloons...Ch. 2 - Derive Equation 2.10 by integrating Equation 2.7...Ch. 2 - An objects acceleration increases quadratically...Ch. 2 - An objects acceleration is given by the expression...Ch. 2 - An objects acceleration decreases exponentially...Ch. 2 - A ball is dropped from rest at a height li0 above...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...Ch. 2 - A wildlife biologist is studying the hunting...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. A plastic rod that has been charged to –15.0 nC touches a metal sphere. Afterward, the rod's charge is –10.0...
College Physics: A Strategic Approach (4th Edition)
1. When is energy most evident?
Conceptual Physics (12th Edition)
Tree height You are standing under a tree. The trees shadow is 34 m long and your shadow is about twice your he...
College Physics
Repeat the previous problem, assuming that the electric field is directed along a body diagonal of the cube.
University Physics Volume 2
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A driving instructor reports that crashing a car at 30 mi/hmi/h is equivalent to dropping the car from a height of just over 40 feet. Calculate the drop height corresponding to the crash. Express your answer using two significant figures.arrow_forwardA kicker kicks a football upward from the ground at an initial velocity of 63 feet per second. The height of the football stadium is 70 feet. The height an object reaches with respect to time is modeled by the following equation: gr +vt +s In the equation, g is -32 ft/sec', v is the initial velocity, s is the initial height, and t is time in seconds. Write a function that models this situation as related to the number of seconds since kickoff. 1. 2. Sketch and describe the graph of this function, including intercepts and maximum height. 3. At what times is the football the same height as the stadium? Explain your answer. 4. Suppose the initial velocity of the kicked football is 68 feet per second. At what times is the football the same height as the top of the stadium? Justify your answer. Now consider that the kicker is trying to kick an extra point. A linebacker on the opposing team has a maximum reach of 10 feet, which includes his height, full extension of his arms, and his…arrow_forwardA boxer's fist and glove have a mass of m = 1.04 kg. The boxer's fist can obtain a speed of v = 9.25 m/s in a time of t = 0.21 s. Write a symbolic expression for the magnitude of the average acceleration, aave, of the boxer's fist, in terms of the variables provided. Find the magnitude of the average acceleration, aave, in meters per square second. Write an expression for the magnitude of the average net force, Fb, that the boxer must apply to his fist to achieve the given velocity. (Write the expression in terms of m, v and t.) What is the numerical value of Fb, in newtons?arrow_forward
- On a particularly busy workday, I might need to drive back and forth between ASUN’s Newport and Jonesboro campuses, which are 38 miles apart. It takes me 48 min to make the drive from the Newport campus to the Jonesboro campus. On the return trip from Jonesboro to Newport, I decide to speed by maintaining an average speed that is 10 mi/hr faster than my average speed going from Newport to Jonesboro.arrow_forwardI looked at the motion diagram and thought it was representing an object accelerating to the right and getting faster. I thought A and B were right, but my first thought was that C looked like it could be moving to the right and slowing down, could you explain why this is wrong? I tend to get these types of questions wrong.arrow_forwardA common graphical representation of motion along a straight line is the v vs. t graph, that is, the graph of (instantaneous) velocity as a function of time. In this graph, time t is plotted on the horizontal axis and velocity v on the vertical axis. Note that by definition, velocity and acceleration are vector quantities. In straight-line motion, however, these vectors have only a single nonzero component in the direction of motion. Thus, in this problem, we will call the velocity and a the acceleration, even though they are really the components of the velocity and acceleration vectors in the direction of motion, respectively. Figure U₁(m/s) 2.0 1.5 1.0 0.5 1(s) 0 10 20 30 40 50 1 of 1 (Figure 1) is a plot of velocity versus time for a particle that travels along a straight line with a varying velocity. Refer to this plot to answer the following questions. Part A What is the initial velocity of the particle, vo? Express your answer in meters per second. ▸ View Available Hint(s) V₁ =…arrow_forward
- I am doing a lab report for my physics class. The lab consists of throwing a ball upward and recording its movements. Please explain these next questions and how you got the answer. Determine the launch velocity of the ball from the velocity vs. time graphs in the x and y directions. Is this value reasonable? Determine the velocity of the ball at its highest point. Is this value reasonable?arrow_forwardPlease answer all the parts of the questionarrow_forwardVery large accelerations can injure the body, especially if they last for a considerable length of time. One model used to gauge the likelihood of injury is the severity index (??), defined as ??=?^5/2?. In the expression, ?t is the duration of the acceleration, but ?a is not equal to the acceleration. Rather, ?a is a dimensionless constant that equals the number of multiples of ?g that the acceleration is equal to. In one set of studies of rear-end collisions, a person's velocity increases by 17.5 km/h17.5 km/h with an acceleration of 30.5 m/s230.5 m/s2 . Let the +?+x direction point in the direction the car is traveling. What is the severity index for the collision? How far ?d does the person travel during the collision if the car was initially moving forward at 4.60 km/h4.60 km/h ?arrow_forward
- You are driving home from school steadily at 99 km/h for 190 km . It then begins to rain and you slow to 63 km/h instantly. You arrive home after driving 5.0 hours. How far is your hometown from school?Express your answer using two significant figures. What was your average speed?Express your answer using two significant figures.arrow_forwardYou are driving home from school steadily at 97 km/hkm/h for 160 kmkm . It then begins to rain and you slow to 61 km/hkm/h instantly. You arrive home after driving 4.5 hours. How far is your hometown from school? answer using two significant figures. What was your average speed? answer using two significant figures.arrow_forwardThe velocity of a particle is given by the function v(t)=t^2-7t+1027 , where the velocity is measured in meters per second. Determine the total displacement of the particle and the total distance travelled by the particle in the first ten seconds of its travel. Give exact answers, and provide units on your final answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY