Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 43CP

In a women’s 100-m race, accelerating uniformly, Laura takes 2.00 s and Healan 3.00 s to attain their maximum speeds, which they each maintain for the rest of the race. They cross the finish line simultaneously, both setting a world record of 10.4 s. (a) What is the acceleration of each sprinter? (b) What are their respective maximum speeds? (c) Which sprinter is ahead at the 6.00-s mark, and by how much? (d) What is the maximum distance by which Healan is behind Laura, and at what time does that occur?

(a)

Expert Solution
Check Mark
To determine

The acceleration of each sprinter.

Answer to Problem 43CP

The acceleration of Laura and Healan are 5.31m/s2 and 3.74m/s2 respectively.

Explanation of Solution

Section 1:

To determine: The acceleration of the Laura.

Answer: The acceleration of the Laura is 5.31m/s2 .

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s and the travelled distance for sprinter is 100m

The distance covered by Laura is,

S1=12(t1)2a1+a1(t1)(t1't1) (I)

  • a1 is the acceleration for Laura.
  • S1 is the distance travelled by Laura.
  • t1 is the acceleration time.
  • t1' is the remaining acceleration time for Laura.

Substitute 100m for S1 , 2s for t1 and 8.4s for t1' to find the a1 .

100m=12(2s)2a1+a1(2s)(8.4s)a1=5.31m/s2

Conclusion:

Therefore, the acceleration of Laura is 5.31m/s2 .

Section 2:

To determine: The acceleration of the Healan.

Answer: The acceleration of the Healan is 3.74m/s2 .

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s .

The distance covered by Healan is,

S2=12(t2)2a2+a2(t2)(t2't2) (II)

  • a2 is the acceleration for Healan.
  • S2 is the distance travelled by the Healan.
  • t2 is the acceleration time.
  • t2' is the remaining acceleration time for Healan.

Substitute 100m for S2 , 3s for t2 and 7.4s for t2' to find the a2 .

100m=12(3s)2a2+a2(3s)(7.4s)a2=3.74m/s2

Conclusion:

Therefore, the acceleration of Healan and 3.74m/s2 .

(b)

Expert Solution
Check Mark
To determine

The maximum speeds of Laura and Healan.

Answer to Problem 43CP

The maximum speeds of Laura and Healan are 10.62m/s and 11.22m/s .

Explanation of Solution

Section 1:

To determine: The maximum speeds of Laura.

Answer: The maximum speeds of Laura is 10.62m/s .

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s .

Formula to calculate the maximum speed for Laura is,

v1=a1t1

  • v1 is the maximum speed of Laura.

Substitute 5.31m/s2 for a1 and 2s for t1 to find the v1 .

v1=(5.31m/s2)(2s)=10.62m/s

Conclusion:

Therefore, the maximum speed for Laura is 10.62m/s .

Section 2:

To determine: The maximum speeds of Healan.

Answer: The maximum speeds of Healan is 11.22m/s .

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s .

Formula to calculate the maximum for Healan is,

v2=a2t2

  • v2 is the maximum speed of Healan.

Substitute 3.74m/s2 for a2 and 3s for t2 to find the v2 .

v2=(3.74m/s2)(3s)=11.22m/s

Conclusion:

Therefore, the maximum speed for Healan is 11.22m/s .

(c)

Expert Solution
Check Mark
To determine

The sprinter which is ahead at 6.20s from another and also determine the distance by which one sprinter is ahead by another.

Answer to Problem 43CP

The sprinter is Laura is ahead of Healan by 2.60m .

Explanation of Solution

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s .

Formula to calculate the distance for Laura at 6s from equation (I) is,

S1=12(t1)2a1+a1(t1)(t1't1)

Formula to calculate the distance for Healan at 6s from equation (II) is,

S2=12(t2)2a2+a2(t2)(t2't2)

The difference of distance travelled by two sprinters is,

ΔS=S1S2

Substitute 12(t1)2a1+a1(t1)(t1't1) for S1 and 12(t2)2a2+a2(t2)(t2't2) for S2 in the above equation.

ΔS=(12(t1)2a1+a1(t1)(t1't1))(12(t2)2a2+a2(t2)(t2't2))

Substitute 5.31m/s2 for a1 , 6.20s for t1' , 2s for t1 , 3.74m/s2 for a2 , 6s for t2' and 3s for t2 to find ΔS .

ΔS=[{12(2s)25.31m/s2+5.31m/s2(2s)(6s2s)}{12(3s)23.74m/s2+3.74m/s2(3s)(6s3s)}]=53.1m50.5m=2.6m

The positive sign shows that Laura is ahead of Healan.

Conclusion:

Therefore, the sprinter Laura is ahead of Healan by 2.60m .

(d)

Expert Solution
Check Mark
To determine

The maximum distance by which Healan is behind Laura and time at which maximum distance occurs.

Answer to Problem 43CP

The maximum distance by which Healan is behind Laura is 4.46m at time 2.84s .

Explanation of Solution

Given information:

The time taken by Laura and Healan to attain their maximum speeds are 2s and 3s respectively. The time taken to cross the finish line simultaneously by Laura and Healan is 10.4s .

Maximum distance between runners occurs when each has the same velocity setting the equal to each other.

Laura has already reached her maximum speed while Healan is still accelerating so,

10.62m/s=(3.74m/s2)tt=2.84s

Formula to calculate the distance for Laura at 2.84s from equation (I) is,

S1=12(t1)2a1+a1(t1)(tt1)

  • t is the time at which maximum distance occurs.

Formula to calculate the distance for Healan from equation (II) is,

S2=12(t)2a2

The maximum distance by which Healan is behind Laura is,

ΔS=S1S2

Substitute 12(t1)2a1+a1(t1)(tt1) for S1 and 12(t)2a2 for S2 in the above equation.

ΔS=(12(t1)2a1+a1(t1)(tt1))12(t)2a2

Substitute 5.31m/s2 for a1 , 2.84s for t1' , 2s for t1 , 5.31m/s2 for a2 and 2.84s for t to find ΔS .

ΔS={12(2s)25.31m/s2+5.31m/s2(2s)(2.84s2s)}12(2.84s)23.74m/s2=19.54m15.08m=4.46m

Conclusion:

Therefore, the maximum distance by which Healan is behind Laura is 4.46m at time 2.84s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
here is my problem, I need help:   One simple model for a person running the 100 mm dash is to assume the sprinter runs with constant acceleration until reaching top speed, then maintains that speed through the finish line. If a sprinter reaches his top speed of 11.1 m/sm/s in 2.64 ss , what will be his total time? Express your answer in seconds.
In 2008, at the Beijing Olympics, Usain Bolt of Jamaica reclaimed his title as the world's fastest man. He completed the l00m final in a world record time of 9.69 s. He accelerated uniformly from rest for the first 6.5 seconds, covering 60 m before coasting at maximum speed to the finish. Calculate his average speed for the first 6.5 s.
From rest, the cheetah can accelerate at 8.8 m/s2 and reach a top speed of 30 m/s (108 km/h)! It can maintain this maximum speed over a distance of about 400 meters before it needs to stop.On the other hand, the Thomson’s gazelle has a top speed of 70 km/h, which is less than the cheetah’s, but it can maintain this top speed for a while as well. From rest, the gazelle can accelerate at 4.5 m/s2 to reach its top speed. When a cheetah goes after a gazelle, success or failure is a simple matter of kinematics: you will determine if the cheetah’s high speed is enough to allow it to reach its prey before it runs out of steam (or time).You will apply basic kinematics and simple assumptions to determine how a chase can play out. Q2. In the elapsed time that the cheetah started and must stop, what distance can the gazelle cover?   (again clearly show your calculations)     Why is the 70 multiplied by 5/18?

Chapter 2 Solutions

Physics for Scientists and Engineers with Modern Physics

Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Why is the following situation impossible?...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - You are observing the poles along the side of the...Ch. 2 - Prob. 25PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 31PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - Automotive engineers refer to the time rate of...Ch. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 38APCh. 2 - Hannah tests her new sports car by racing with...Ch. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 41APCh. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - In a womens 100-m race, accelerating uniformly,...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY