Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 35AP
The froghopper Philaenus spumarius is supposedly the best jumper in the animal kingdom. To start a jump, this insect can accelerate at 4.00 km/s2 over a distance of 2.00 mm as it straightens its specially adapted “jumping legs.” Assume the acceleration is constant. (a) Find the upward velocity with which the insect takes off. (b) In what time interval does it reach this velocity? (c) How high would the insect jump if air resistance were negligible? The actual height it reaches is about 70 cm, so air resistance must be a noticeable force on the leaping froghopper.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A model rocket is launched straight upward with an initial speed of 45.0 m/s. It accelerates with a constant upward acceleration of 1.50 m/s² until its engines stop at an altitude of 170 m.
(a) What can you say about the motion of the rocket after its engines stop?
This answer has not been graded yet.
(b) What is the maximum height reached by the rocket?
m
(c) How long after liftoff does the rocket reach its maximum height?
S
(d) How long is the rocket in the air?
The froghopper Philaenus spumarius is supposedly the best jumper in the animal kingdom. To start a jump, this insect can accelerate at 4.00 km/s2 over a distance of 2.0 mm as it straightens its specially designed "jumping legs."
(a) Find the upward velocity with which the insect takes off.
m/s
(b) In what time interval does it reach this velocity?
ms
(c) How high would the insect jump if air resistance were negligible? The actual height it reaches is about 70 cm, so air resistance must be a noticeable force on the leaping froghopper.
m
Need Help?
Read It
A model rocket is launched straight upward with an initial speed of 44.0 m/s. It accelerates with a constant upward acceleration of 2.50 m/s until its engines stop at an
altitude of 200 m.
(a) What can you say about the motion of the rocket after its engines stop?
This answer has not been graded yet.
(b) What is the maximum height reached by the rocket?
m
(c) How long after liftoff does the rocket reach its maximum height?
S
(d) How long is the rocket in the air?
S
Chapter 2 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 2.1 - Which of the following choices best describes what...Ch. 2.1 - Under which of the following conditions is the...Ch. 2.2 - Are officers in the highway patrol more interested...Ch. 2.5 - Make a velocitytime graph for the car in Figure...Ch. 2.5 - If a car is traveling eastward and slowing down,...Ch. 2.6 - Which one of the following statements is true? (a)...Ch. 2.7 - In Figure 2.12, match each vxt graph on the top...Ch. 2.8 - Consider the following choices: (a) increases, (b)...Ch. 2 - The speed of a nerve impulse in the human body is...Ch. 2 - A particle moves according to the equation x =...
Ch. 2 - The position of a pinewood derby car was observed...Ch. 2 - An athlete leaves one end of a pool of length L at...Ch. 2 - A positiontime graph for a particle moving along...Ch. 2 - A car travels along a straight line at a constant...Ch. 2 - A person takes a trip, driving with a constant...Ch. 2 - A child rolls a marble on a bent track that is 100...Ch. 2 - Figure P2.9 shows a graph of vx versus t for the...Ch. 2 - (a) Use the data in Problem 3 to construct a...Ch. 2 - A particle starts from rest and accelerates as...Ch. 2 - Draw motion diagrams for (a) an object moving to...Ch. 2 - Each of the strobe photographs (a), (b), and (c)...Ch. 2 - An electron in a cathode-ray tube accelerates...Ch. 2 - A parcel of air moving in a straight tube with a...Ch. 2 - In Example 2.7, we investigated a jet landing on...Ch. 2 - An object moving with uniform acceleration has a...Ch. 2 - Solve Example 2.8 by a graphical method. On the...Ch. 2 - A glider of length moves through a stationary...Ch. 2 - Why is the following situation impossible?...Ch. 2 - A glider of length 12.4 cm moves on an air track...Ch. 2 - In the particle under constant acceleration model,...Ch. 2 - At t = 0, one toy car is set rolling on a straight...Ch. 2 - You are observing the poles along the side of the...Ch. 2 - Prob. 25PCh. 2 - An attacker at the base of a castle wall 3.65 m...Ch. 2 - The height of a helicopter above the ground is...Ch. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - At time t = 0, a student throws a set of keys...Ch. 2 - Prob. 31PCh. 2 - A student drives a moped along a straight road as...Ch. 2 - Automotive engineers refer to the time rate of...Ch. 2 - In Figure 2.11b, the area under the velocitytime...Ch. 2 - The froghopper Philaenus spumarius is supposedly...Ch. 2 - A woman is reported to have fallen 144 ft from the...Ch. 2 - At t = 0, one athlete in a race running on a long,...Ch. 2 - Prob. 38APCh. 2 - Hannah tests her new sports car by racing with...Ch. 2 - Two objects, A and B, are connected by hinges to a...Ch. 2 - Prob. 41APCh. 2 - Two thin rods are fastened to the inside of a...Ch. 2 - In a womens 100-m race, accelerating uniformly,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- It has been claimed that an insect called the froghopper (Philaenus spumarius) is the best jumper in the animal kingdom. This insect can accelerate at 4,000 m/s2 over a distance of 2.0 mm as it straightens its specially designed "jumping legs." Assuming a uniform acceleration, answer the following. (a) What is the velocity of the insect after it has accelerated through this short distance? (Enter the magnitude of the velocity.) (m/s) (b) How long did it take to reach that velocity? (ms) (c) How high would the insect jump if air resistance could be ignored? Note that the actual height obtained is about 0.7 m, so air resistance is important here. (m)arrow_forwardA typical sneeze expels material at a maximum speed of 55.4 m/s. Suppose the material begins inside the nose at rest, 2.00 cm from the nostrils. It has a constant acceleration for the first 0.250 cm and then moves at constant velocity for the remainder of the distance. A) What is the acceleration as the material moves the first 0.250 cm? B) How long does it take to move the 2.00-cm distance in the nose? C) Which of the following is the correct graph of vx(t) if the sneeze expels material at a maximum speed of 44.0 m/s and has a constant acceleration for the first 0.250 cm and then moves at constant velocity for the remainder of the distance?arrow_forwardTwo children are playing on two trampolines. The first child bounces up one-and-a-half times higher than the second child. The initial speed up of the second child is 4.0 m/s(a) Find the maximum height the second child reaches. (b) What is the initial speed of the first child? (c) How long was the first child in the air?arrow_forward
- An ant moves with a uniform acceleration. It has a velocity of 12.0 cm/s in the positive x direction when it's x-coordinate is 3.00 cm. What is the ant's acceleration if it's coordinate is -5cm after 2.00 seconds?arrow_forwardA 20-kg child slides down a playground side with a constant acceleration of a=1.3m/s^2 parallel to the surface of the slide. The child starts sliding with an initial speed of V0. Refer to the figurearrow_forwardrocket, on an unknown planet, launches straight upward. Starting from rest, the rocket accelerates until it reaches 25 m/s then maintains that velocity until its boosters shut off. It eventually falls back to the planet. ASSUME: Starting at t = 0, the rocket accelerates upwards a total distance of 10 m, where it reaches an instantaneous velocity of 25 m/s The moment it reaches an instantaneous velocity of 25 m/s, it travels 30 m upward at a constant speed, then the engines cut off. The moment the engines cut off: the rocket is in free fall From the time it initially launches (t = 0) to the time it lands back on the planet is 7 s The acceleration due to gravity is constant on this planet. HOWEVER you may not assume g = 10 m/s2 Air resistance is negligible DETERMINE: The acceleration due to gravity on this planetarrow_forward
- A cat drops from a shelf 3.9 ft above the floor and lands on all four feet. His legs bring him to a stop in a distance of 12 cm. Calculate his acceleration (assumed constant) while he is stopping. Express in SI units.arrow_forwardA spaceship starts at rest, and then launches vertically into the air with an upward acceleration of 2.0 m/s2. When it reaches a height of 500 m, it runs out of fuel; after this point its acceleration is due to gravity, i.e. 9.8 m/s2 downward. (ignore air resistance)(a) How long does it take the spaceship to run out of fuel? (b) What is its velocity at the point when it runs out of fuel? (c) What is the maximum height that the spaceship reaches? (d) For how much time (total, from launch) is the rocket in the air? (e) What is the spaceship’s velocity just before it hits the ground?arrow_forwardAn astronaut on a strange planet finds that he can jump a maximum horizontal distance of 16.0 m if his initial speed is 2.60 m/s. What is the free-fall acceleration on the planet? (Ignore air resistance.)arrow_forward
- A particle has a constant acceleration of 6.0 m/s2. (a) If its initial velocity is 2.0 m/s, at what time is its displacement 5.0 m? (b) What is its velocity at that time?arrow_forwardA rocket is fired vertically upward with an initial velocity of 80 m/s at the ground level. Its engine then fires and it accelerated at 4m/s2 until it reaches an altitude of 1200m. At that point, the engine fail and the rocket goes into free fall. Disregard air resistance. How long was the rocket above the ground?arrow_forwardKindly do not round offarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY