Physical Universe
16th Edition
ISBN: 9780077862619
Author: KRAUSKOPF, Konrad B. (konrad Bates), Beiser, Arthur
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 3MC
A box suspended by a rope is pulled to one side by a horizontal force. The tension in the rope
- a. is less than before
- b. is unchanged
- c. is greater than before
- d. may be any of the above, depending on how strong the force is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A box is pulled at a constant speed, v, along a horizontal surface with a kinetic coefficient of friction less than 1.
The person pulls with a constant horizontal force, F, on the box.
The constant horizontal force the person pulls with:
A. Has the same size as the weight of the box.
B. Is greater than the weight of the box.
C. Is less than the weight of the box.
D. Is greater than the friction force.
A box is pulled at a constant speed, v, along a horizontal surface with a kinetic coefficient of friction less than 1.
The person pulls with a constant horizontal force, F, on the box.
The constant horizontal force the person pulls with:
1. Has the same size as the weight of the box.
2. Is greater than the weight of the box.
3. Is less than the weight of the box.
4. Is greater than the friction force.
The direction of the frictional force is
a.
same direction of the intended motion
O b. perpendicular to the direction of the intended motion
c. opposite direction of the intended motion
d. along the x-direction
Chapter 2 Solutions
Physical Universe
Ch. 2 - Which of the following quantities is not a vector...Ch. 2 - Which of the following statements is incorrect? a....Ch. 2 - A box suspended by a rope is pulled to one side by...Ch. 2 - The sum of two vectors is a minimum when the angle...Ch. 2 - In which of the following examples is the motion...Ch. 2 - Two objects have the same size and shape but one...Ch. 2 - The acceleration of a stone thrown upward is a....Ch. 2 - You are riding a bicycle at constant speed when...Ch. 2 - When an object is accelerated, a. its direction...Ch. 2 - If we know the magnitude and direction of the net...
Ch. 2 - The weight of an object a. is the quantity of...Ch. 2 - Compared with her mass and weight on the earth, an...Ch. 2 - The earth and the moon exert equal and opposite...Ch. 2 - A car that is towing a trailer is accelerating on...Ch. 2 - When a boy pulls a cart, the force that causes him...Ch. 2 - In order to cause something to move in a circular...Ch. 2 - An object is moving in a circle with a constant...Ch. 2 - A car rounds a curve on a level road. The...Ch. 2 - The centripetal force that keeps the earth in its...Ch. 2 - The gravitational force with which the earth...Ch. 2 - The speed needed to put a satellite in orbit does...Ch. 2 - An astronaut inside an orbiting satellite feels...Ch. 2 - A bicycle travels 12 km in 40 min. Its average...Ch. 2 - Which one or more of the following sets of...Ch. 2 - An airplane whose airspeed is 200 km/h is flying...Ch. 2 - A ship travels 200 km to the south and then 400 km...Ch. 2 - How long does a car whose acceleration is 2 m/s2...Ch. 2 - A ball is thrown upward at a speed of 12 m/s. It...Ch. 2 - A car that starts from rest has a constant...Ch. 2 - A car traveling at 10 m/s begins to be accelerated...Ch. 2 - A car with its brakes applied has an acceleration...Ch. 2 - The distance the car in Multiple Choice 31 travels...Ch. 2 - A bottle falls from a blimp whose altitude is 1200...Ch. 2 - When a net force of 1 N acts on a 1-kg body, the...Ch. 2 - When a net force of 1 N acts on a 1-N body, the...Ch. 2 - A car whose mass is 1600 kg (including the driver)...Ch. 2 - A 300-g ball is struck with a bat with a force of...Ch. 2 - A bicycle and its rider together have a mass of 80...Ch. 2 - The weight of 400 g of onions is a. 0.041 N b. 0.4...Ch. 2 - A salami weighs 3 lb. Its mass is a. 0.31 kg b....Ch. 2 - An upward force of 600 N acts on a 50-kg...Ch. 2 - The upward force the rope of a hoist must exert to...Ch. 2 - The radius of the circle in which an object is...Ch. 2 - A car rounds a curve at 20 km/h. If it rounds the...Ch. 2 - A 1200-kg car whose speed is 6 m/s rounds a turn...Ch. 2 - If the earth were 3 times as far from the sun as...Ch. 2 - A woman whose mass is 60 kg on the earths surface...Ch. 2 - A man whose weight is 800 N on the earths surface...Ch. 2 - A woman standing before a cliff claps her hands,...Ch. 2 - The starter of a race stands at one end of a line...Ch. 2 - In 1977 Steve Weldon ate 91 m of spaghetti in 29...Ch. 2 - A snake is slithering toward you at 1.5 m/s. If...Ch. 2 - A woman jogs for 2 km at 8 km/h and then walks for...Ch. 2 - Three forces, each of 10 lb, act on the same...Ch. 2 - Is it correct to say that scalar quantities are...Ch. 2 - A man is rowing at 8 km/h in a river 1.5 km wide...Ch. 2 - A woman walks 70 m to an elevator and then rises...Ch. 2 - Two tugboats are towing a ship. Each exerts a...Ch. 2 - Can a rapidly moving object have the same...Ch. 2 - The acceleration of a certain moving object is...Ch. 2 - A car whose acceleration is constant reaches a...Ch. 2 - The brakes of a car are applied to give it an...Ch. 2 - A car starts from rest and reaches a speed of 40...Ch. 2 - The brakes of a car moving at 14 m/s are applied,...Ch. 2 - A car is moving at 10 m/s when it begins to be...Ch. 2 - The driver of a train moving at 20 m/s applies the...Ch. 2 - A car starts from rest and covers 400 m (very...Ch. 2 - Is it true that something dropped from rest falls...Ch. 2 - A rifle is aimed directly at a squirrel in a tree....Ch. 2 - The acceleration of gravity on the surface of...Ch. 2 - When a football is thrown, it follows a curved...Ch. 2 - A crate is dropped from an airplane flying...Ch. 2 - A stone is thrown horizontally from a cliff and...Ch. 2 - (a) Imagine that Charlotte drops a ball from a...Ch. 2 - A person in a stationary elevator drops a coin and...Ch. 2 - How fast must a ball be thrown upward to reach a...Ch. 2 - A person dives off the edge of a cliff 33 m above...Ch. 2 - A ball dropped from the roof of a building takes 4...Ch. 2 - A ball is thrown downward at 12 m/s. What is its...Ch. 2 - When will a stone thrown vertically upward at 9.8...Ch. 2 - A ball is thrown upward from the edge of a cliff...Ch. 2 - The air resistance experienced by a falling object...Ch. 2 - A ball is thrown vertically upward with an initial...Ch. 2 - A rifle is aimed directly at the bulls-eye of a...Ch. 2 - An airplane is in level flight at a speed of 100...Ch. 2 - A ball is thrown horizontally from the roof of a...Ch. 2 - A bullet is fired horizontally from a rifle at 200...Ch. 2 - An airplane whose speed is 60 m/s is flying at an...Ch. 2 - A person at the masthead of a sailboat moving at...Ch. 2 - Compare the tension in the coupling between the...Ch. 2 - In accelerating from a standing start to a speed...Ch. 2 - A 12,000-kg airplane launched by a catapult from...Ch. 2 - The brakes of a 1200-kg car exert a force of 4 kN....Ch. 2 - A force of 20 N gives an object an acceleration of...Ch. 2 - A bicycle and its rider together have a mass of 80...Ch. 2 - A 430-g soccer ball at rest on the ground is...Ch. 2 - A car and driver with a total mass of 1600 kg has...Ch. 2 - Before picking up the passengers, the driver of...Ch. 2 - Consider the statement: Sara weighs 55 kg. What is...Ch. 2 - When a force equal to its weight is applied to an...Ch. 2 - A person weighs 85 N on the surface of the moon...Ch. 2 - A mass of 8 kg and another of 12 kg are suspended...Ch. 2 - An 80-kg man slides down a rope at constant speed....Ch. 2 - How much force is needed to give a 5-kg box an...Ch. 2 - A parachutist whose total mass is 100 kg is...Ch. 2 - A person in an elevator suspends a 1-kg mass from...Ch. 2 - A person stands on a scale in an elevator. When...Ch. 2 - A 60-kg person stands on a scale in an elevator....Ch. 2 - Since the opposite forces of the third law of...Ch. 2 - What is the relationship, if any, between the...Ch. 2 - A book rests on a table. (a) What is the reaction...Ch. 2 - A car with its engine running and in forward gear...Ch. 2 - An engineer designs a propeller-driven spacecraft....Ch. 2 - Two children wish to break a string. Are they more...Ch. 2 - When a 5-kg rifle is fired, the 9-g bullet is...Ch. 2 - Where should you stand on the earths surface to...Ch. 2 - Under what circumstances, if any, can something...Ch. 2 - A person swings an iron ball in a vertical circle...Ch. 2 - A car makes a clockwise turn on a level road at...Ch. 2 - When you whirl a ball at the end of a string, the...Ch. 2 - A 40-kg crate is lying on the flat floor of a...Ch. 2 - The greatest force a level road can exert on the...Ch. 2 - Find the minimum radius at which an airplane...Ch. 2 - Some people believe that aliens from elsewhere in...Ch. 2 - The 200-g head of a golf club moves at 40 m/s in a...Ch. 2 - An airplane flying at a constant speed of 160 m/s...Ch. 2 - A track team on the moon could set new records for...Ch. 2 - If the moon were half as far from the earth as it...Ch. 2 - Compare the weight and mass of an object at the...Ch. 2 - A hole is bored to the center of the earth and a...Ch. 2 - Is the suns gravitational pull on the earth the...Ch. 2 - The centripetal force that keeps the moon in its...Ch. 2 - According to Keplers second law, the earth travels...Ch. 2 - A 2-kg mass is 1 m away from a 5-kg mass. What is...Ch. 2 - A dishonest grocer installs a 100-kg lead block...Ch. 2 - A bull and a cow elephant, each of mass 2000 kg,...Ch. 2 - An airplane makes a vertical circle in which it is...Ch. 2 - Two satellites are launched from Cape Canaveral...Ch. 2 - Is an astronaut in an orbiting spacecraft actually...Ch. 2 - With the help of the data in Table 17-1, find the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 15.0-lb block rests on the floor. (a) What force does the floor exert on the block? (b) A rope is tied to the block and is run vertically over a pulley. The other end is attached to a free-handing 10.0-lb object. What now is the force exerted by the floor on the 15.0-lb block? (c) If the 10.0-lb object in part (b) is replaced with a 20.0-lb object, what is the force exerted by the floor on the 15.0-lb block?arrow_forwardA 15.0-lb block rests on a horizontal floor, (a) What force does the floor exert on the block? (b) A rope is tied to the block and is run vertically over a pulley. The other end is attached to a free-hanging 10.0-lb object. What now is the force exerted by the floor on the 15.0-lb block? (c) If the 10.0-lb object in part (b) is replaced with a 20.0-lb object, what is the force exerted by the floor on the 15.0-lb block?arrow_forwardA car is stuck in the mud. A tow truck pulls on the car with the arrangement shown in Figure P5.24. The tow cable is under a tension of 2 500 N and pulls downward and to the left on the pin at its upper end. The light pin is held in equilibrium by forces exerted by the two bars A and B. Each bar is a strut; that is, each is a bar whose weight is small compared to the forces it exerts and which exerts forces only through hinge pins at its ends. Each strut exerts a force directed parallel to its length. Determine the force of tension or compression in each strut. Proceed as follows. Make a guess as to which way (pushing or pulling) each force acts on the top pin. Draw a free-body diagram of the pin. Use the condition for equilibrium of the pin to translate the free-body diagram into equations. From the equations calculate the forces exerted by struts A and B. If you obtain a positive answer, you correctly guessed the direction of the force. A negative answer means that the direction should be reversed, but the absolute value correctly gives the magnitude of the force. If a strut pulls on a pin. it is in tension. If it pushes, the strut is in compression. Identify whether each strut is in tension or in compression.arrow_forward
- A freight train consists of two 8.00105 -kg engines and 45 cars with average masses of 5.50105 kg. (a) What force must each engine exert backward on the track to accelerate the train at a rate of 5.00102 m/s2 if the force of friction is 7.50105 N, assuming the engines exert identical forces? This is not a large frictional force for such a massive system. Rolling friction for trains is small, and consequently trains are very energy-efficient transportation systems. (b) What is the magnitude of the force in the coupling between the 37th and 38th cars (this is the force each exerts on the other), assuming all cars have the same mass and that friction is evenly distributed among all of the cars and engines?arrow_forwardA truck loaded with sand accelerates along a highway. The driving force on the truck remains constant. What happens to the acceleration of the truck if its trailer leaks sand at a constant rate through a hole in its bottom? (a) It decreases at a steady rate. (b) It increases at a steady rate. (c) It increases and then decreases. (d) It decreases and then increases. (e) It remains constant.arrow_forwardConsider a large truck carrying a heavy load, such as steel beams. A significant hazard for the driver is that the load may slide forward, crushing the cab, if the truck stops suddenly in an accident or even in braking. Assume, for example, a 10 000-kg load sits on the flatbed of a 20 000-kg truck moving at 12.0 m/s. Assume the load is not tied down to the truck and has a coefficient of static friction of 0.500 with the truck bed. (a) Calculate the minimum stopping distance for which the load will not slide forward relative to the truck. (b) Is any piece of data unnecessary for the solution?arrow_forward
- In Example 6.5, we investigated the forces a child experiences on a Ferris wheel. Assume the data in that example applies to this problem. What force (magnitude and direction) does the seat exert on a 40.0-kg child when the child is halfway between top and bottom?arrow_forwardA man exerts a horizontal force of 112 N on a refrigerator of mass 42.0 kg. If the refrigerator doesnt move, what is the minimum coefficient of static friction between the refrigerator and the floor? (See Section 4.6.)arrow_forwardConsider the 52.0-kg mountain climber in Figure 5.22. (a) Find the tension in the rope and the force that the mountain climber must exert with her feet on the vertical rock face to remain stationary. Assume that the force is exerted parallel to her legs. Also, assume negligible force exerted by her arms. (b) What is the minimum coefficient of friction between her shoes and the cliff? Figure 5.22 Part of the climber's weight is supported by her rope and part by friction between her feet and the rock face.arrow_forward
- When you push on a box with a 200-N force instead of a 50-N force, you can feel that you are making a greater effort. When a table exerts a 200-N normal force instead of one of smaller magnitude, is the table really doing anything differently?arrow_forwardAn object of mass m is dropped al t = 0 from the roof of a building of height h. While the object is falling, a wind blowing parallel to the face of the building exerts a constant horizontal force F on the object. (a) At what time t does the object strike the ground? Express t in terms of g and h. (b) Find an expression in terms of m and F for the acceleration ax of the object in the horizontal direction (taken as the positive x direction). (c) How far is the object displaced horizontally before hitting the ground? Answer in terms of m, g, F, and h. (d) Find the magnitude of the objects acceleration while it is falling, using the variables F, m, and g.arrow_forwardAn iron bolt of mass 65.0 g hangs from a string 35.7 cm long. The top end of the string is fixed. Without touching it, a magnet attracts the bolt so that it remains stationary, but is displaced horizontally 28.0 cm to the tight from the previously vertical line of the string. The magnet is located to the right of the bolt and on the same vertical level as the bolt in the final configuration. (a) Draw a free-body diagram of the bolt. (b) Find the tension in the string, (c) Find the magnetic force on the bolt.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY