Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 31P
To determine
The relation between the speed of Josie and maximum speed of Reginald.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The velocity of a particle is given by v(t) =t² – 2t. The position of the particle at the
time t = 0 is S(0) = 0.
1. Find a formula for the position S(t) at time t.
2. Find the displacement of the object on [0,3].
3. Find the total distance traveled by the particle on [0,3].
An athletic 6ft tall Human walks in a straight line between point A and point B on a flat surface counting every step untill he has covered the distance between points which is precisely 5 kilometers. The journey takes him 1 hour, so he knows that his body moved at a consistent speed of 5kmph.
The Human is then shrunk to a perfectly scaled 3mm tall duplicate and is instructed once again to walk a straight line ( under identical conditions ) keeping the same pace and repeating the exact same number of steps that he took at 6ft tall.
Question - Is it true that the tiny 3mm tall Human has traveled at a speed 5kph and traversed 5km of distance ?
I am having trouble with an average speed problem. The problem states that a person walks at 4.5 meters per second from point a to b. Then walks back from point b to a at a speed of 3.2 m/s. I know that average speed is displacement/time. However I am not sure how to calculate time or displacement from the two givens. The problem also gives that the average velocity is 0.
Chapter 2 Solutions
Physics for Scientists and Engineers
Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - Prob. 10P
Ch. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 16PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Prob. 60PCh. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65PCh. 2 - Prob. 66PCh. 2 - Prob. 67PCh. 2 - Prob. 68PCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Prob. 76PCh. 2 - Prob. 77PCh. 2 - Prob. 78PCh. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - Prob. 81PCh. 2 - Prob. 82PCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Prob. 85PCh. 2 - Prob. 86PCh. 2 - Prob. 87PCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Prob. 91PCh. 2 - Prob. 92PCh. 2 - Prob. 93PCh. 2 - Prob. 94PCh. 2 - Prob. 95PCh. 2 - Prob. 96PCh. 2 - Prob. 97PCh. 2 - Prob. 98PCh. 2 - Prob. 99PCh. 2 - Prob. 100PCh. 2 - Prob. 101PCh. 2 - Prob. 102PCh. 2 - Prob. 103PCh. 2 - Prob. 104PCh. 2 - Prob. 105PCh. 2 - Prob. 106PCh. 2 - Prob. 107PCh. 2 - Prob. 108PCh. 2 - Prob. 109PCh. 2 - Prob. 110PCh. 2 - Prob. 111PCh. 2 - Prob. 112PCh. 2 - Prob. 113PCh. 2 - Prob. 114PCh. 2 - Prob. 115PCh. 2 - Prob. 116PCh. 2 - Prob. 117PCh. 2 - Prob. 118PCh. 2 - Prob. 119PCh. 2 - Prob. 120PCh. 2 - Prob. 121PCh. 2 - Prob. 122P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle moves along the x axis. Its x coordinate varies with time according to the expression x = 3t° – 2t +5, where x is in meters and t is in seconds. a) Determine the displacement of the particle in the time intervals t=1s to t=3s. b) Calculate the average velocity in the time intervals t=1s to t=3s. c) Find the instantaneous velocity of the particle at t=2.5s. d) Calculate the average acceleration in the time intervals t=1s to t=3s. e) Find the instantaneous acceleration of the particle at t=2.5s.arrow_forwardPhysics Question #71 is the attached imagearrow_forwardThe velocity of a particle traveling in a straight line is given by v = (6t – 3t²) m/s, where t is in seconds. If s = 0 when t = 0, determine the particle's deceleration and position when t = 5 s. How far has the particle traveled during the t = 5 s time interval, and what is its average speed? I need a clear answer by hand, not by keyboard | dybalaarrow_forward
- In this problem you will determine the average velocity of a moving object from the graph of its position x(t)x(t) as a function of time ttt. A traveling object might move at different speeds and in different directions during an interval of time, but if we ask at what constant velocity the object would have to travel to achieve the same displacement over the given time interval, that is what we call the object's average velocity. We will use the notation vave[t1,t2]vave[t1,t2] to indicate average velocity over the time interval from t1 to t2. For instance, vave[1,3]vave[1,3] is the average velocity over the time interval from t=1 to t=3. find V(ave) [0,3]arrow_forwardAs a training exercise, a soccer player must run the length of the soccer field (leg 1), then turn around and run back to her starting point (leg 2) without stopping. If the length of the soccer field is L meters, and she runs the leg 1 in t 1 seconds, then turns around and runs leg 2 in t_2 seconds, find the following: (Write your answers using the symbols as they are written in the question.) a) Her average velocity during leg 1 was L/t'1 m-s 1, b) Her average velocity during leg 2 was L/t 2 m-s1. c) Her average velocity over the entire exercise was m-s 1. d) Her average speed during the entire exercise was 2L/t_1+t_2 m-s1. CO3, W31, W32 Ask Dr. Hébert for help.arrow_forwardDiego runs back and forth along a straight track. During the time interval 0arrow_forwardTo visit your favorite ice cream shop, you must travel 470 mm west on Main Street and then 930 mm south on Division Street. Suppose you take 44 ss to complete the 470-mm displacement and 73 ss to complete the 930-mm displacement. a) What is the magnitude of your average velocity during this 117-second period of time? Express your answer to two significant figures and include appropriate units. b) What is the direction of your average velocity during this 117-second period of time? Express your answer to two significant figures. c) What is your average speed during the trip? Express your answer to two significant figures and include appropriate units.arrow_forward2/124 The particle P starts from rest at point A at time t = 0 and changes its speed thereafter at a con- stant rate of 2g as it follows the horizontal path shown. Determine the magnitude and direction of its total acceleration (a) just before it passes point B, (b) just after it passes point B, and (c) as it passes point C. State your directions relative to the x-axis shown (CCW positive). A P B -3 m x 3.5 m Carrow_forwardThe graph shows the displacement-time history for the rectilinear motion of a particle during an 8-second interval. Determine the average velocity Vay during the interval and, to within reasonable limits of accuracy, find the instantaneous velocity v when t = 4 s. t's 10 8 f 2 0 0 Answers: 2 4 t, s When t = 4 s, 6 For the whole interval, Vav = V = 8 m/s m/sarrow_forwardA red Mazda Miata (type of car) accelerates from rest at a rate of a₁ in the positive x direction for a total of 20.0 seconds. The Mazda then holds their speed and direction constant for a 20.0 additional seconds. Finally, while continuing in the positive x direction, the Mazda slows down at a rate of a2 until the car stops moving. We want to determine the total distance traveled by the Mazda and the average speed of the car if we know a₁ and ₂. (A) Sketch a graph of velocity versus time for this short trip. Label the time axis to indicate which portions of the curve(s) correspond to the above intervals. Identify and write knowns and unknowns (B) Without using numerical values, determine which physics equations of motion will help solve this problem. Simplify as useful for this particular case. (C) If a₁ = 2.0 m/s² and a₂ = -3.0 m/s² determine the total distance traveled during all intervals and the average velocity of the Mazda.arrow_forwardAt time t0=0.0s, a car, starting from rest, moves south. It continues moving south, and by time tf =121s, it has covered a distance of d=6689m. Take north as the positive x direction, as indicated in the figure. Part A: What is the car's average speed, in meters per second, during this period? Part B: What is the car's displacement, in meters, during this period? Part C: What is the car's average velocity, in meters per second, during this period? Part D: A different car, after starting from rest at t0 =0.0s, travels for the same period, tf =121s, attaining a final velocity of vf =−30.0m/s. What is this car's average acceleration, in meters per squared seconds, during the period described?arrow_forwardThe displacement (in feet) of a certain particle moving in a straight line is given by y = (A) Find the average velocity for the time period beginning when t = 3 and lasting (i) .01 s: (ii) .005 s: (iii.002 s: (iv) .001 s: NOTE: For the above answers, you may have to enter 6 or 7 significant digits if you are using a calculator. (B) Estimate the instantaneous velocity when t = 3. Answer:arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Relative Velocity - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=_39hCnqbNXM;License: Standard YouTube License, CC-BY