Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.31MCQ
One advantage of balanced three-phase systems over separate singlephase systems is reduced capital and operating costs of transmission and distribution.
(a) True
(b) False
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For question 1B Draw paraboloid Z=x^2+y^2
A3 ϕ, 15 kV, 60 Hz, 30 MVA, Y-connected cylindrical-rotor synchronous machine generator has Ra =0.5 Ω per phase and Xs =5.2 Ω per phase. The generator delivers the rated load at 15 kV and 0.85 lagging power factor. Determine the excitation voltage, Ef, for this operating condition.
A3 φ, 50 Hz infinite bus bar is connected to two synchronous generators. Generator 1 has a speed of 300 rpm and generator 2 has 30 poles. Determine:
the speed of generator 2
the number of poles of generator 1
Chapter 2 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 2 - The rms value of v(t)=Vmaxcos(t+) is given by a....Ch. 2 - If the rms phasor of a voltage is given by V=12060...Ch. 2 - If a phasor representation of a current is given...Ch. 2 - Prob. 2.4MCQCh. 2 - Prob. 2.5MCQCh. 2 - Prob. 2.6MCQCh. 2 - Prob. 2.7MCQCh. 2 - Prob. 2.8MCQCh. 2 - Prob. 2.9MCQCh. 2 - The average value of a double-frequency sinusoid,...
Ch. 2 - The power factor for an inductive circuit (R-L...Ch. 2 - The power factor for a capacitive circuit (R-C...Ch. 2 - Prob. 2.13MCQCh. 2 - The instantaneous power absorbed by the load in a...Ch. 2 - Prob. 2.15MCQCh. 2 - With generator conyention, where the current...Ch. 2 - Consider the load convention that is used for the...Ch. 2 - Prob. 2.18MCQCh. 2 - The admittance of the impedance j12 is given by...Ch. 2 - Consider Figure 2.9 of the text, Let the nodal...Ch. 2 - The three-phase source line-to-neutral voltages...Ch. 2 - In a balanced three-phase Y-connected system with...Ch. 2 - In a balanced system, the phasor sum of the...Ch. 2 - Consider a three-phase Y-connected source feeding...Ch. 2 - For a balanced- load supplied by a balanced...Ch. 2 - A balanced -load can be converted to an...Ch. 2 - When working with balanced three-phase circuits,...Ch. 2 - The total instantaneous power delivered by a...Ch. 2 - The total instantaneous power absorbed by a...Ch. 2 - Under balanced operating conditions, consider the...Ch. 2 - One advantage of balanced three-phase systems over...Ch. 2 - While the instantaneous electric power delivered...Ch. 2 - Given the complex numbers A1=630 and A2=4+j5, (a)...Ch. 2 - Convert the following instantaneous currents to...Ch. 2 - The instantaneous voltage across a circuit element...Ch. 2 - For the single-phase circuit shown in Figure...Ch. 2 - A 60Hz, single-phase source with V=27730 volts is...Ch. 2 - (a) Transform v(t)=75cos(377t15) to phasor form....Ch. 2 - Let a 100V sinusoidal source be connected to a...Ch. 2 - Consider the circuit shown in Figure 2.23 in time...Ch. 2 - For the circuit shown in Figure 2.24, compute the...Ch. 2 - For the circuit element of Problem 2.3, calculate...Ch. 2 - Prob. 2.11PCh. 2 - The voltage v(t)=359.3cos(t)volts is applied to a...Ch. 2 - Prob. 2.13PCh. 2 - A single-phase source is applied to a...Ch. 2 - Let a voltage source v(t)=4cos(t+60) be connected...Ch. 2 - A single-phase, 120V(rms),60Hz source supplies...Ch. 2 - Consider a load impedance of Z=jwL connected to a...Ch. 2 - Let a series RLC network be connected to a source...Ch. 2 - Consider a single-phase load with an applied...Ch. 2 - A circuit consists of two impedances, Z1=2030 and...Ch. 2 - An industrial plant consisting primarily of...Ch. 2 - The real power delivered by a source to two...Ch. 2 - A single-phase source has a terminal voltage...Ch. 2 - A source supplies power to the following three...Ch. 2 - Consider the series RLC circuit of Problem 2.7 and...Ch. 2 - A small manufacturing plant is located 2 km down a...Ch. 2 - An industrial load consisting of a bank of...Ch. 2 - Three loads are connected in parallel across a...Ch. 2 - Prob. 2.29PCh. 2 - Figure 2.26 shows three loads connected in...Ch. 2 - Consider two interconnected voltage sources...Ch. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - A balanced three-phase 240-V source supplies a...Ch. 2 - Prob. 2.41PCh. 2 - A balanced -connected impedance load with (12+j9)...Ch. 2 - A three-phase line, which has an impedance of...Ch. 2 - Two balanced three-phase loads that are connected...Ch. 2 - Two balanced Y-connected loads, one drawing 10 kW...Ch. 2 - Three identical impedances Z=3030 are connected in...Ch. 2 - Two three-phase generators supply a three-phase...Ch. 2 - Prob. 2.48PCh. 2 - Figure 2.33 gives the general -Y transformation....Ch. 2 - Consider the balanced three-phase system shown in...Ch. 2 - A three-phase line with an impedance of...Ch. 2 - A balanced three-phase load is connected to a...Ch. 2 - What is a microgrid?Ch. 2 - What are the benefits of microgrids?Ch. 2 - Prob. CCSQCh. 2 - Prob. DCSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. Triple Integral Applications 2a. First step Darw the volume of the solids in the first octant which bounded by xy-plane, yz-plane, plane x+y=4 and z. = x2+6. 2b. First draw the region bounded in between z = p and z=1, side by the cylinder r? ≤ 4, and in the first and second octant. Defermine its volume by using cylindrical coordinate system. 2c. Solving Using Spherical Coordinates 2c. First draw the volume of region which is bounded above by sphere of x? + y2 + 2? = 81 and below by cone z = x? + y? in the first octant. first step drawing second step calculation i need to cal by handarrow_forwardArmature reaction in an alternator primarily affects: A: rotor speed B: terminal voltage per phase C: frequency of armature current D: generated voltage per phasearrow_forwardAs the load of a 3-phase synchronous motor increases, the speed: a: Decreases b: Increases c: Does not change d: Increases then decreasesarrow_forward
- configuration to Q2: Design bio-electronics circuit using two inverting an operation-amplifier produce the output voltage Vo=10V1-8V2-0.8V3+12V4 choose RF-100KQ2. What's the type circuit.arrow_forwardconfiguration to Q2: Design bio-electronics circuit using two inverting an operation-amplifier produce the output voltage Vo-10V1-8V2-0.8V3+12V4 choose RF-100K2. What's the type circuit. [5] Marrow_forwardDon't use ai to answer I will report you answerarrow_forward
- The capacitor shown in the figure below is initially discharged. At t=0s the switch is moved to position B. Determine an expression for the voltage V across the capacitor for t≥0sarrow_forward4,57. Consider a discrete-time LTI system whose system function H(z) is given by Z H(z) Z- (a) Find the step response s[n]. 1 |z|> 2 (b) Find the output y[n] to the input x[n] = nu[n]. Ans. (a) s[n] = [2-()"]u[n] (b) y[n]=2[()" + n − 1]u[n] -arrow_forward4.56. Consider the system shown in Fig. 4-10. (a) Find the system function H(z). (b) Find the difference equation relating the output y[n] and input x[n]. Ans. (a) H(z) = + 7 -1 1+a,z+azz-2 (b) y[n]+a, y[n − 1]+a₂y[n-2]= box[n] + b,x[n − 1] + b₂x[n-2] x[n] a₂ b₂ Z-' b₁ bo Σ Σ y[n] Fig. 4-10arrow_forward
- Q1:For the network of figure, determine: 1-Av,AI,ZIN,Zo and Avs. if hie-1.8KQ, hre=2*10-4, hfe-120 and hoe-25μs. 2-S(Ico),S(VBE),S(ẞ) using T₁ as the temperature at which the parameter values are s and ẞ(T2) as 20% more than ẞ(T1). の 3-Determine the net change in Ic if a change in operating condition results in Ico increa 0.2μA to 10uA,VBE drops from 0.7 to 0.6 and ẞ increase 20%. 4-Find the change in Ic if the temperature increase from 20 to 80 [C] +16 3 kohm 220 kohm 20 MF Ikohm HOME HE 120 mv B4= www B 12 kohm 200 ohm Ikohm 20MF 10arrow_forward4.55. Consider the system shown in Fig. 4-9. Find the system function H(z) and its impulse response h[n]. 1 Ans. H(z) = 1- ½-1 h[n] = { } }) un u[n] x[n] + Σ Fig. 4-9 y[n]arrow_forwardDon't use ai to answer I will report you answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Power System Stability in C# Part 1: Fundamentals of Stability Analysis; Author: EETechStuff;https://www.youtube.com/watch?v=SaT9oWcHgKw;License: Standard Youtube License