College Physics, Volume 1
2nd Edition
ISBN: 9781133710271
Author: Giordano
Publisher: Cengage
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 21P
To determine
Physical examples for the motion given in FigureP.2.20
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
35. A person going for a walk follows the path shown in
T Figure P3.35. The total trip consists of four straight-line
paths. At the end of the walk, what is the person's resultant
displacement measured from the starting point?
Start 100 m
300 m
End
200 m
30.0
150 m
60.0°
Figure P3.35
I need help with Q4. I can't figure out what equation I should use to find the velocity. I think it would be a combination of the velocity formulas for x and y but I'm not sure. My 4 simplified equations are:
1. Vxf = Vxi
2. (delta)x = Vxi * (delta)t
3. Vyf = 9.8 m/s^2 * (delta)t
4. (delta)y = 1/2(9.8 m/s^2) * (delta)t^2
For my data I have:
(delta)y = 0.6604 meters
(delta) t = 0.367 seconds
I don't need the answer or a long explanation, I really just can't figure out what equation/formula I need to use to find "the velocity of your object as it rolls off the incline and enters free-fall."
Pr1. The speed of a cyclist along the horizontal road is 16 km/h, 12 km/h upward and 24 km/h
downward. Once the cyclist went from the village to the town, and it took 3 hours to get to the
town and to go back to the village. How far is the city from the village?
Chapter 2 Solutions
College Physics, Volume 1
Ch. 2.1 - Prob. 2.1CCCh. 2.2 - Prob. 2.2CCCh. 2.2 - For which of the positiontime graphs in Figure...Ch. 2.2 - Figure 2.22A shows the positiontime graph for an...Ch. 2.4 - Prob. 2.6CCCh. 2 - Prob. 1QCh. 2 - Prob. 2QCh. 2 - Prob. 3QCh. 2 - Prob. 4QCh. 2 - Prob. 5Q
Ch. 2 - Prob. 6QCh. 2 - Prob. 7QCh. 2 - Prob. 8QCh. 2 - Prob. 9QCh. 2 - Prob. 10QCh. 2 - Prob. 11QCh. 2 - Prob. 12QCh. 2 - Prob. 13QCh. 2 - Prob. 14QCh. 2 - Prob. 15QCh. 2 - Prob. 16QCh. 2 - Prob. 17QCh. 2 - Prob. 18QCh. 2 - Prob. 19QCh. 2 - Three blocks rest on a table as shown in Figure...Ch. 2 - Two football players start running at opposite...Ch. 2 - Prob. 22QCh. 2 - In SI units, velocity is measured in units of...Ch. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Consider a marble falling through a very thick...Ch. 2 - Prob. 10PCh. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Figure P2.13 shows three motion diagrams, where...Ch. 2 - Prob. 14PCh. 2 - Figure P2.15 shows several hypothetical...Ch. 2 - Prob. 16PCh. 2 - Figure P2.17 shows several hypothetical...Ch. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - For the object described by Figure P2.24, estimate...Ch. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Prob. 60P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- We are standing on the top of a 1040 feet tall building and launch a small object upward. The object's height, measured in feet, after t seconds is h(t) = 16t? + 128t + 1040. A) What is the object initial velocity? ft/second B) What is the highest point that the object reaches? feetarrow_forwardWhy is the following situation possible? Emily challenges her friend David to catch a $1 bill as follows. She holds the bill vertically as shown in figure P2.29 with the center of the bill between but not touching David's index finger and thumb. Without warning, Emily releases the bill. David catches the bill without moving his hands downwards. David reaction time is equal to the average human reaction time. Avg human reaction time is .2s. Dollar bill is approx 15.5cm in length. I need help explaining this. Thank you.arrow_forwardPlease answer question harrow_forward
- Can I get some help on this please.thank you.arrow_forwardGaetano shoots a basketball from a height of 6.5 ft with an initial vertical velocity of 17 ft/s. Write an equation to model the height, h, of the basketball t seconds after Gaetano shoots it. b. What is the maximum height the basketball reaches? If the hoop is 10ft high, how long does it take the ball to go through the hoop? a. С. acer DII % & 5 7 q e t р f k C V marrow_forwardMy question isn't how to solve the problem exactly. In fact, it's already been solved on this website. My question is about the acceleration. When I solve this problem myself, first I calculate the velocity by dividing 100m by 53s. I get 1.89m/s. Then I use that to find the acceleration using the equation vf = vi + at. That's 1.89/53 = 0.036m/s^2. That's not correct. The correct way to find the acceleration is to us the equation d = 1/2 at^2 and solve that way without taking the intermediate step of finding the velocity. Doing it that way, the acceleration is 0.0712m/s^2. My question is why you get a different result doing it the first way than you get doing it the second way.arrow_forward
- phyarrow_forwardStart 100 m 300 m 200 m 30.00 150 m 60.0° Figure P3.47arrow_forwardA J8 jC =2.83km todW 5. A hoverboard rider goes straight down Arkansas Avenue for 2 miles, then turns left and goes straight for 3 miles, then turns right and goes 1 mile before stopping. Draw a diagram in part "a" to show the path the hoverboard rider took. こ was a. What DISTANCE did the rider go? b. What DISPLACEMENT did the rider Zmi have at the end of the trip? (length and direction) AD? AE2+BC2 AD2 = 12+3 SAD? =STO 233MATEI0 forlW.o 3 mi 1o bns s 3+2+1=16mi(distance) AD = 3.162 AD=3.16miarrow_forward
- I have no clue why this problem is being rejected. I have submitted similar problems and have been answered. Can I please get some help with this. Thank you!arrow_forwardDwight decides to race around the perimeter of the Scranton business parkin an effort to beat another employee’s best running time. Assuming heruns with an average velocity of 10 ft/s, and he completes 4 laps in 5minutes,a. What is the perimeter of the business park in feet?b. In meters?( 1 ft = 0.3048 m )arrow_forwardWe are standing on the top of a 720 feet tall building and launch a small object upward. The object's height, measured in feet, after t seconds is h(t) = - 16t2 +64t+ 720. = A) What is the object initial velocity? B) What is the highest point that the object reaches? ft/second feetarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Speed Distance Time | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=EGqpLug-sDk;License: Standard YouTube License, CC-BY