Concept explainers
The current waveform depicted in Fig. 2.29 is characterized by a period of 4 s. (a) What is the average value of the current over a single period? (b) Compute the average current over the interval 1 < t < 3 s. (c) If q(0) = 1C, sketch q(t), 0 < t < 4 s.
FIGURE 2.29 An example of a time-varying current.
(a)
Find the average value of the given current waveform in Figure 2.29 over the period of 4 s.
Answer to Problem 21E
The average value of the given current waveform over the period of 4 s is
Explanation of Solution
Given data:
Refer to Figure 2.29 in textbook for the time-varying current with the period of 4 s.
Formula used:
Write the formula to find the average value of a function of current over a period as,
Here,
T is the time period.
Calculation:
From the given current waveform in Figure 2.29, the function of current
For the period of
For the period of
For the period of
For the period of
Therefore, the final function of current
The average value of current
Reduce the equation as follows.
Conclusion:
Thus, the average value of the given current waveform over the period of 4 s is
(b)
Find the average current of the waveform over the period of
Answer to Problem 21E
The average current of the waveform over the period of
Explanation of Solution
Given data:
Refer to part (a).
Formula used:
Write the formula to find the average value of a function of current over a period of
Here,
Calculation:
Write the function of current
Now, the average current of
Conclusion:
Thus, the average current of the waveform over the period of
(c)
Sketch the waveform for the charge
Explanation of Solution
Given data:
Refer to part (a).
The initial charge
Formula used:
Write the expression for the relation between charge
Integrate the above equation on both sides.
Calculation:
Using the function of
For
Substitute 3 A for
Substitute 1 C for
Substitute 1 for
For
For the period of
Substitute –1 A for
Substitute 4 C for
Substitute 2 for
For
For the period of
Substitute 1 A for
Substitute 3 C for
Substitute 3 for
For
For the period of
Substitute 0 A for
Substitute 4 C for
Therefore, the charge
Table 1 shows for
Table 1
t in seconds | |
0 | 1 |
1 | 4 |
2 | 2 |
3 | 4 |
4 | 4 |
Figure 1 shows the charge (C) vs time (s) waveform.
Conclusion:
Thus, the waveform for the charge
Want to see more full solutions like this?
Chapter 2 Solutions
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
- The AC V-meter in the figure is designed to measure the RMS value of the input sinusoidal voltage u(t). The diodes are assumed to be ideal; M is a moving-coil type measuring unit with R=2k (internal resistance) and im=100µA (current for full-scale deflection). a) Draw the current through M in scale and calculate R1 for a nominal voltage of 100V. b) The class of the measuring unit is given as 0.5. Calculate the maximum acceptable tolerance for the resistors (all of the same tolerance), if the V-m is required to be of the class 1.5 max. R1 u(t) R2 R3 |20k R4 k: kQ 10karrow_forwardA battery of emf 30.0 V is connected to a switch, an inductor of inductance ? = 0.600 ? and two resistors, R1 = 10.0 ? and R2 = 6.00?. The switch is initially open. A. What are the values of currents ?1, ?2, ?3 just after the switch is closed? (Just give an answer) ?1 = ?2 = ?3 = B.)Which point, a or b, is at higher potential or are they at the same potential, just after switch S is closed? (Just give an answer) C. What is the value of current ?1 through the battery a long time after the switch is closed? Show your work and briefly explain your logicarrow_forwardIt is defined as the ratio of rms load voltage and average load voltage of an alternating current. Your answer In electronics it is define as the ratio of the RMS (root mean square) value to the average value (mathematical mean of absolute values of all points on the waveform). Your answer By definition: It is the amount of rms value of ac component to the dc component in the rectifier output. Your answer It is defined as ratio of dc power available at the load to the input ac power. Your answerarrow_forward
- how to do the resizing of elements for the design of a PIEZOELECTRIC TILE PROTOTYPE FOR THE GENERATION OF ELECTRIC ENERGY THROUGH FOOTPASS TRAFFICarrow_forwardQ3] Design a circuit to produce an average voltage of 27V across a 102 load resistor from a 70V rms 50-Hz ac source. Verify your answer by the following: a) Draw the circuit. b) Draw to scale the waveforms for the input, output voltages and the current.arrow_forwardplease could you help me to find the solution of question (b)arrow_forward
- A single phase bridge rectifier supplied from a 120V - 50 Hz sinusoidal source is connected to an inductive load. The general expression of the RMS AC component of the current is given below where Vm is the maximum input voltage. If R = 500 Q and L = 1H, then the current ripple factor RF, would be equal to: 4Vm IAc = V2. r. R2 + (2wL)² Select one: O a. 1 O b. 0.8 O C. 0.5 O d. 0.29 TOSHIBAarrow_forwardWhile constructing a Bridge rectifier, the designer mistakenly has swapped the terminals of D3 as shown in the figure below, where • Diode D3 is damaged so that it is always open circuit regardless of the applied voltage. • vs(t) is a sinusoidal signal with a peak value (Vs = 5 V). • Diodes are modelled using the constant voltage model with VDO = 0.7 V • The ac line voltage has an rms value of 120 V and a frequency (f) = 60 Hz • The resistance RL = 10 kohm. a) Calculate the transformer turns ratio (N1/N2) if vs(t) is obtained from the secondary side of the transformer whose primary side is connected to the ac line voltage (which has a 120 V rms value). b) Plot in the same graph the input signal vs(t) and the output signal vout(t) (show all details including amplitudes, time instances, etc.) c) Calculate the rms values of the output signal vout(t). (hint: sin2 (x) = 0.5(1- cos(2x))) d) If a capacitor C = 3.58 µF is connected across R = 10 kohm, repeat (b) in a new graph e) With the…arrow_forwardWhile constructing a Bridge rectifier, the designer mistakenly has swapped the terminals of D3 as shown in the figure below, where • Diode D3 is damaged so that it is always open circuit regardless of the applied voltage. • vs(t) is a sinusoidal signal with a peak value (Vs = 5 V). • Diodes are modelled using the constant voltage model with VDO = 0.7 V • The ac line voltage has an rms value of 120 V and a frequency (f) = 60 Hz • The resistance RL = 10 kohm. a) Calculate the transformer turns ratio (N1/N2) if vs(t) is obtained from the secondary side of the transformer whose primary side is connected to the ac line voltage (which has a 120 V rms value). b) Plot in the same graph the input signal vs(t) and the output signal vout(t) (show all details including amplitudes, time instances, etc.) Please plot the graph. c) Calculate the rms values of the output signal vout(t). (hint: sin2 (x) = 0.5(1- cos(2x))) d) If a capacitor C = 3.58 µF is connected across R = 10 kohm, repeat (b) in a new…arrow_forward
- Exe: The single-phase bridge rectifier has an RL Load and an ac source, with R = 10Ω andL = 10mH. The peak value of the source is Vm = 100V at 60 Hz. The expressions of voltage andcurrent outputs are:(a) Determine v0(t) and i0(t) with two ac terms (n=2 and 4)(b) Determine the power absorbed by the load.arrow_forwardAssume that the electric potential varies along the x-axis as shown in the figure. Determine the intervals in which Ex has: A) its maximum absolute value B) its minimum absolute value C) Plot Ex versus x Note: do not consider the extremes of each intervalarrow_forwardIn the circuit below, if the inductance L is large enough to operate in continuous current mode. a) Draw the waveform of the output voltage and mains current for the 45 degree trigger angle when the switch S is in transmission. b) Average value of output DA voltage VDC1 when switch S is open, output DA when switch S is closed (in transmission) If the average value of the voltage is VDC2, calculate the value of VDC1 / VDC2. Lesson: power electronics please quickarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,