Fundamentals Of Engineering Thermodynamics
9th Edition
ISBN: 9781119391388
Author: MORAN, Michael J., SHAPIRO, Howard N., Boettner, Daisie D., Bailey, Margaret B.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 2.12P
To determine
The change in the kinetic energy of the soda can. The effect that has on the value of the change in kinetic energy when friction is significant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An automobile having a mass of 1100 kg initially moves along a level highway at 110 km/h relative to the highway. It then climbs a hill whose crest is 40 m above the level highway and parks at a rest area located there. Use a reference with kinetic and potential energy each equal to zero for the stationary highway before the hill.Let g = 9.81 m/s2. For the automobile, determine its change in kinetic energy and its change in potential energy, both in kJ.
As shown on the right, a vertical piston–cylinder assembly containing a gas is placed on a hot plate. The piston initially rests on the stops. With the onset of heating, the gas pressure increases. At what pressure, in bar, does the piston start rising? The piston moves smoothly in the cylinder and g = 9.81 m/s2.
(a) During the packaging process, a can of soda of mass 0.4 kg moves down a surface inclined 20° relative to the horizontal, as
shown in the figure below. The can is acted upon by a constant force R. parallel to the incline and by the force of gravity. The
magnitude of the constant force R is 0.05 N. Ignoring friction between the can and the inclined surface, determine the can's
change in kinetic energy, in J, and whether it is increasing or decreasing. If friction between the can and the inclined surface were
significant, what effect would that have on the value of the change in kinetic energy? Let g = 9.8 m/s²
Final location
Soda
20°
m=0.4 kg-
1.5 m
↓
Initial location
Soda
R = 0.05 N
Soda
Chapter 2 Solutions
Fundamentals Of Engineering Thermodynamics
Ch. 2 - Prob. 2.1ECh. 2 - Prob. 2.2ECh. 2 - Prob. 2.3ECh. 2 - Prob. 2.4ECh. 2 - Prob. 2.5ECh. 2 - Prob. 2.6ECh. 2 - Prob. 2.7ECh. 2 - Prob. 2.8ECh. 2 - Prob. 2.9ECh. 2 - Prob. 2.10E
Ch. 2 - Prob. 2.11ECh. 2 - Prob. 2.12ECh. 2 - Prob. 2.13ECh. 2 - Prob. 2.14ECh. 2 - Prob. 2.15ECh. 2 - Prob. 2.16ECh. 2 - Prob. 2.17ECh. 2 - Prob. 2.1CUCh. 2 - Prob. 2.2CUCh. 2 - Prob. 2.3CUCh. 2 - Prob. 2.4CUCh. 2 - Prob. 2.5CUCh. 2 - Prob. 2.6CUCh. 2 - Prob. 2.7CUCh. 2 - Prob. 2.8CUCh. 2 - Prob. 2.9CUCh. 2 - Prob. 2.10CUCh. 2 - Prob. 2.11CUCh. 2 - Prob. 2.12CUCh. 2 - Prob. 2.13CUCh. 2 - Prob. 2.14CUCh. 2 - Prob. 2.15CUCh. 2 - Prob. 2.16CUCh. 2 - Prob. 2.17CUCh. 2 - Prob. 2.18CUCh. 2 - Prob. 2.19CUCh. 2 - Prob. 2.20CUCh. 2 - Prob. 2.21CUCh. 2 - Prob. 2.22CUCh. 2 - Prob. 2.23CUCh. 2 - Prob. 2.24CUCh. 2 - Prob. 2.25CUCh. 2 - Prob. 2.26CUCh. 2 - Prob. 2.27CUCh. 2 - Prob. 2.28CUCh. 2 - Prob. 2.29CUCh. 2 - Prob. 2.30CUCh. 2 - Prob. 2.31CUCh. 2 - Prob. 2.32CUCh. 2 - Prob. 2.33CUCh. 2 - Prob. 2.34CUCh. 2 - Prob. 2.35CUCh. 2 - Prob. 2.36CUCh. 2 - Prob. 2.37CUCh. 2 - Prob. 2.38CUCh. 2 - Prob. 2.39CUCh. 2 - Prob. 2.40CUCh. 2 - Prob. 2.41CUCh. 2 - Prob. 2.42CUCh. 2 - Prob. 2.43CUCh. 2 - Prob. 2.44CUCh. 2 - Prob. 2.45CUCh. 2 - Prob. 2.46CUCh. 2 - Prob. 2.47CUCh. 2 - Prob. 2.48CUCh. 2 - Prob. 2.49CUCh. 2 - Prob. 2.50CUCh. 2 - Prob. 2.51CUCh. 2 - Prob. 2.52CUCh. 2 - Prob. 2.53CUCh. 2 - Prob. 2.54CUCh. 2 - Prob. 2.1PCh. 2 - Prob. 2.2PCh. 2 - Prob. 2.3PCh. 2 - Prob. 2.4PCh. 2 - Prob. 2.5PCh. 2 - Prob. 2.6PCh. 2 - Prob. 2.7PCh. 2 - Prob. 2.8PCh. 2 - Prob. 2.9PCh. 2 - Prob. 2.10PCh. 2 - Prob. 2.11PCh. 2 - Prob. 2.12PCh. 2 - Prob. 2.13PCh. 2 - Prob. 2.14PCh. 2 - Prob. 2.15PCh. 2 - Prob. 2.16PCh. 2 - Prob. 2.17PCh. 2 - Prob. 2.18PCh. 2 - Prob. 2.19PCh. 2 - Prob. 2.20PCh. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - Prob. 2.23PCh. 2 - Prob. 2.24PCh. 2 - Prob. 2.25PCh. 2 - Prob. 2.26PCh. 2 - Prob. 2.27PCh. 2 - Prob. 2.28PCh. 2 - Prob. 2.29PCh. 2 - Prob. 2.30PCh. 2 - Prob. 2.31PCh. 2 - Prob. 2.32PCh. 2 - Prob. 2.33PCh. 2 - Prob. 2.34PCh. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - Prob. 2.40PCh. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - Prob. 2.43PCh. 2 - Prob. 2.44PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Prob. 2.47PCh. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - Prob. 2.50PCh. 2 - Prob. 2.51PCh. 2 - Prob. 2.52PCh. 2 - Prob. 2.53PCh. 2 - Prob. 2.54PCh. 2 - Prob. 2.55PCh. 2 - Prob. 2.56PCh. 2 - Prob. 2.57PCh. 2 - Prob. 2.58PCh. 2 - Prob. 2.59PCh. 2 - Prob. 2.60PCh. 2 - Prob. 2.62PCh. 2 - Prob. 2.63PCh. 2 - Prob. 2.64PCh. 2 - Prob. 2.65PCh. 2 - Prob. 2.66PCh. 2 - Prob. 2.67PCh. 2 - Prob. 2.68PCh. 2 - Prob. 2.69PCh. 2 - Prob. 2.70PCh. 2 - Prob. 2.71P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A closed system consisting of 2 lb of a gas undergoes a process during which the relation between pressure and volume is pVn = constant. The process begins with p1 = 35 lbf/in2, V1 = 14 ft3 and ends with p2 = 100 lbf/in2. The value of n = 1.3.Determine the final volume, V2, in ft3, and determine the specific volume at states 1 and 2, in ft3/lb.arrow_forwardAir expands adiabatically in a piston-cylinder assembly from an initial state where p₁ = 100 lbf/in.², v₁ = 3.704 ft3/lb, and T₁ = 1000 °R, to a final state where p2 = 70 lbf/in.² The process is polytropic with n = 1.4. The change in specific internal energy, in Btu/lb, can be expressed in terms of temperature change as Au = (0.171)(T2 - T1). Determine the final temperature, in °R. Kinetic and potential energy effects can be neglected. T₂ = i °Rarrow_forwardThree-tenths kilogram of a gas is contained within a piston-cylinder assembly. The gas undergoes a process for which the pressure-volume relationship is PVA1.6 = constant. The initial pressure is 73 psi, the initial volume is 10 ft3, and the final volume is 15 ft3. The change in specific internal energy of the gas in the process is 35 kJ/kg. There are no significant changes in kinetic or potential energy. Determine the net heat transfer for the process, in kJ. Select one: а. 11.66 b. -4.4 С. 40.8 d. 61.8arrow_forward
- Three-tenths kilogram of a gas is contained within a piston-cylinder assembly. The gas undergoes a process for which the pressure-volume relationship is PV^1.6 = constant. The initial pressure is 73 psi, the initial volume is 10 ft3, and the final volume is 15 ft3. The change in specific internal energy of the gas in the process is 35 kJ/kg. There are no significant changes in kinetic or potential energy. Determine the net heat transfer for the process, in kJ.arrow_forwardWork is done on an adiabatic system due to which its velocity changes from 10 m/s to 20 m/ s. elevation increases by 20 m and temperature increases by 1 K. The mass of the system is 10 kg. Cv= 100 J/(kg K) and gravitational acceleration is 10 m/s². If there is no change in any other component of the energy of the system, the magnitude of total work done (in kJ) on the system isarrow_forward6.arrow_forward
- It is the total energy of a flowing fluid on a unit-mass basis.arrow_forwardA piston-cylinder assembly contains 0.7 lb of propane. The propane expands from an initial state where p₁ = 60 lbf/in.2 and T₁ = 50°F to a final state where p2 = 10 lbf/in. During the process, the pressure and specific volume are related by pv² = constant. Determine the energy transfer by work, in Btu.arrow_forwardA gas with a density of 1.0 lb/ft3 weighs 4.0 lbf on the Moon, where the acceleration of gravity is 5.47 ft/s2.Determine its weight, in lbf, and volume, in ft3, on Mars, where g = 12.86 ft/s2.arrow_forward
- The mass of an airplane at sea level (g = 32.174 ft/s2) is 10 metric tons. Find its (a) mass in lbm, slugs, and kg and (b) its weight in lbf and Newtons when the airplane is traveling at a 55,000 ft elevation. The acceleration of gravity decreases by 3.35 x 10-6 ft/s2 for each foot of elevation.arrow_forwardA construction crane weighing 12,000 lbf fell from a height of 500 ft to the street below during a severe storm. For g = 32.05 ft/s², determine the mass, in lb, and the change in gravitational potential energy of the crane, in ft-lbf.arrow_forwardNitrogen gas is confined in a cylinder and the pressure of the gas is maintained by a weight placed on the piston. The mass of the piston and the weight together is 100 kg. The acceleration due to gravity is 9.81 m/s2 and the atmospheric pressure is 1.01325 bar. Assume frictionless piston. Determine: (a) The force exerted by the atmosphere, the piston and the weight on the gas if the piston is 200 mm in diameter. (b) The pressure of the gas. (c) If the gas is allowed to expand pushing up the piston and the weight by 500 mm, what is the work done by the gas in kJ? (d) What is the change in the potential energy of the piston and the weight after the expansion in part (c)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license