Concept explainers
Review Question 2.1 What does the statement “Motion is relative” mean?
The meaning of the statement “Motion is relative.”
Answer to Problem 1RQ
Solution:
“Motion is relative” means the motion of the object is defined relative to the motion of the observer.
Explanation of Solution
Introduction:
It depends on the motion of the observer that the object is at rest or in motion.
Explanation:
When the observer, standing on the ground, is observing a car then according to him car is moving on the road but the person sitting inside the car observes that the car is at rest.
So, the car is in motion according to the observer and the same car is at rest according to the person sitting inside the car. So, whether the body is moving or not depends on the motion of the observer. Thus, the motion of the car can be said as relative depending on the observer.
Conclusion:
Motion of an object depends on the motion of the observer.
Want to see more full solutions like this?
Chapter 2 Solutions
College Physics
Additional Science Textbook Solutions
Campbell Biology (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Organic Chemistry (8th Edition)
Applications and Investigations in Earth Science (9th Edition)
Chemistry: Structure and Properties (2nd Edition)
Biology: Life on Earth with Physiology (11th Edition)
- A construction crane with a 42m long horizontal arm carries a load of 5000kg,which is suspended from a trolley that runs along the length of the arm. Thecrane rotates with angular velocity of 0.15 s^-1 . The trolley pulls the load towards the axis of thecrane with a constant horizontal velocity of 0.2m/s relative to the arm. Determinethe magnitude and direction of the Coriolis force acting on the load due to therotation of the crane (the Earth's rotation can be neglected)arrow_forwardThe sport Hammer Throw involves a "hammer", which consists of a metal ballattached by a steel wire to a grip. For women, the mass of the ball is 4kg (themass of the steel wire and grip are negligible), and the length of the steel wire is120 cm. Calculate the magnitude of the centrifugal force that acts on the ball fora woman with 50cm long arms, who spins on the spot with an angular velocity of 4(pi)s^-1arrow_forwardAn AC voltage source is connected to an inductor with inductance 0.047 H. The voltage source provides a time-dependent voltage V across the inductor as described by V(t) = v0 sin(ωt), where v0 = 251 V and ω = 991 rad/s. a) Find the current through the inductor, in amperes with its sign, at time t = 1.9 s. b) Calculate the instantaneous power, in watts with its sign, that the inductor is absorbing at time t = 1.9 s.arrow_forward
- I need help with my physics practice problem. Can some one go through this and show all the steps detial by detail? and fill out the final table?arrow_forwardA standing wave can be created when a disturbance (wave) is trapped between two boundaries. Thus, standing sound wave can be produced when gas is confined in long narrow tube closed at both ends. In addition, standing waves can be produced in tubes with an opening at one end of the tube as well (open-closed tube). The eardrum can be modeled as an open-closed tube. The ear canal in adults is about 2.5 cm in length. Thus, what frequency ranges can occur in the ear canal that are within the range of human hearing? In other words, what is the fundamental frequency of the ear canal? The speed of sound in the warm air of the ear canal is 350 m/s. Hint: Wavelength of standing waves in open-closed tubes are given by the following: λ = 4L where m = 1,3,5,7 marrow_forwardA cardiologist reports to her patient that he radius of the left anterior descending artery of the heart has narrowed by 10.0%. What is the percent increase in the blood pressure drop across the artery that is required to maintain the normal blood flow through artery? Hint: To main normal blood flow, the blood volume flow rate must remain the same (Qnormal = Qdecreased). Poiseuille's Law gives the equation for volume flow rate of a viscous fluid. Please review Chapter 11 and continuity equation.arrow_forward
- The heart pumps blood into the aorta, which has an inner radius of 1.0 cm. The aorta feeds 32 major arteries. If the blood in the aorta travels at a speed of 28 cm/s, at approximately what average speed in units of m/s does it travel in the arteries? Assume that blood can be treated as an ideal fluid and that the arteries each have an inner radius of 0.21 cm.arrow_forwardA standing wave can be created when a disturbance (wave) is trapped between two boundaries. Thus, standing sound wave can be produced when gas is confined in long narrow tube closed at both ends. In addition, standing waves can be produced in tubes with an opening at one end of the tube as well (open-closed tube). The eardrum can be modeled as an open-closed tube. The ear canal in adults is about 2.5 cm in length. Thus, what frequency ranges can occur in the ear canal that are within the range of human hearing? In other words, what is the fundamental frequency of the ear canal? The speed of sound in the warm air of the ear canal is 350 m/s. Hint: Wavelength of standing waves in open-closed tubes are given by the following: A: 4L where m = 1,3,5,7 marrow_forward7) A cylindrical superconductor (type I with a penetration depth of 200 nm) of radius 0.2 m has an axial hole in the center of radius 0.1 m. The superconductor is field cooled with 3 Tesla (field is applied before cooling completed). a) What is the ratio of the flux stored in the hole to the superconducting region when it is cooled to 30 Kelvin, well below Tc = 90 Kelvin. b) What is the value of the current density on the outside and on the inside surfaces?arrow_forward
- Problem 2 Determine the moments of inertia Į and I of the area shown with respect to y centroidal axes respectively parallel and perpendicular to side AB. A 42 mm 28 mm B 36 mmarrow_forwardProblem 1 Determine the moments of inertia I and I, of the area shown with respect to centroidal axes respectively parallel and perpendicular to side AB. 1.2 in. 5.0 in. 1.8 in. 0.9 in. 2.0 in. 2.1 in. Barrow_forwardProblem 7 6-49. Determine the maximum tensile and compressive bending stress in the beam if it is subjected to a moment of M- 4 kip.ft. 0.5 in 0.5 in 3 in. 10 in. D -0.5 in. B -0.5 in.arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning