College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 32P
* Jane and Bob see each other when 100m apart. They are moving forward each other, Jane at constant speed 4.0 m/s and Bob at constant speed 3.0 m/s with respect to the ground. What can you determine about this situation using these data?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
PROBLEMS
11.1◆ Speed addition. Darnell stands in a railroad coach that moves at speedc relative
to the Earth. He tosses a tennis ball forward at speed c relative to the train. If common
sense were correct, the tennis ball would be moving at speed c relative to the Earth.
a. How fast does the tennis ball really move relative to the Earth?
Darnell stands in a railroad coach that moves at speed c relative to the Earth.
He tosses a tennis ball forward at speed c relative to the train. If common sense
were correct, the tennis ball would be moving at speed c relative to the Earth.
b. How fast does the tennis ball really move relative to the Earth?
An athlete crosses a 21 m wide river by swimming perpendicular to the water current at a speed of 0.85 m/s relative to the water. He reaches the opposite side at a distance 39 m downstream from his starting point.
w = 21 md = 39 mvs = 0.85 m/s
a) How fast is the water in the river flowing with respect to the ground in m/s?
b) What is the speed of the swimmer with respect to a friend at rest on the ground in m/s?
A man riding in a hot air balloon will release food items to stranded families in an
island 250 meters below. If the balloon is moving horizontally with a speed of 65
m/s, and the balloon will release the items a horizontal distance of 300 meters in
advance of the families, what vertical velocity (m/s) the items be given so that
they will hit the families
O 24.5
O31.5
O 38.0
O 27.6
Chapter 2 Solutions
College Physics
Ch. 2 - Review Question 2.1 What does the statement...Ch. 2 - Review Question 2.2 Is the following statement...Ch. 2 - Review Question 2.3 Eugenia says that to find the...Ch. 2 - Review Question 2.4 Jade went hiking between two...Ch. 2 - Review Question 2.5 A position- versus-time graph...Ch. 2 - Review Question 2.6 Why is the following statement...Ch. 2 - Review Question 2.7 (a) Give an example in which...Ch. 2 - Review Question 2.8 Explain qualitatively, without...Ch. 2 - Review Question 2.9 A cars motion with respect to...Ch. 2 - Match the general elements or physics knowledge...
Ch. 2 - Which group of quantities below consists only of...Ch. 2 - Which of the following are examples of time...Ch. 2 - A student said. The displacement between my dorm...Ch. 2 - An object moves so that its position depends on...Ch. 2 - 6. Choose the correct approximate...Ch. 2 - Figure Q2.7b shows the position-versus-time graph...Ch. 2 - Oilver takes two identical marbles and drops the...Ch. 2 - 9. Your car is traveling west at 12 m/s. A...Ch. 2 - Which velocity-versus-time graph in Figure Q2.10...Ch. 2 - 11. Azra wants to determine the average speed of...Ch. 2 - A sandbag hangs from a rope attached to a rising...Ch. 2 - An apple falls from a tree. It hits the ground at...Ch. 2 - 14. You have two small metal balls. You drop the...Ch. 2 - Which of the graphs in Figure Q2.15 represent the...Ch. 2 -
16. You throw a small ball upward and notice the...Ch. 2 - Figure Q2.17 shows vectors E,F, and G. Draw the...Ch. 2 - Peter is cycling along an 800-m straight stretch...Ch. 2 - In what reasonable ways can you represent or...Ch. 2 - What is the difference between speed and velocity?...Ch. 2 - 21. What physical quantities do we use to describe...Ch. 2 - 22. Devise stories describing each of the motions...Ch. 2 - 23. For each of the position-versus-time graphs in...Ch. 2 - Figure Q2.24 shows velocity-versus-time graphs for...Ch. 2 - Can an object have a nonzero velocity and zero...Ch. 2 - 26. Can an object at one instant of time have zero...Ch. 2 - 27. Your little sister has a battery-powered toy...Ch. 2 - You throw a ball upward. Your friend says that at...Ch. 2 - A car starts at rest from a stoplight and speeds...Ch. 2 - * You are an observer on the ground. (a) Draw two...Ch. 2 - 3. * A car is moving at constant speed on a...Ch. 2 - 4. * A hat falls off a man’s head and lands in the...Ch. 2 - 5 Figure P2.5 shows several displacement vectors...Ch. 2 - 6. Figure P.26 shows an incomplete motion diagram...Ch. 2 - 7. * You drive 100 Km east do some sightseeing and...Ch. 2 - * Choose an object or reference and a set of...Ch. 2 - The scalar x-component of a displacement vector...Ch. 2 - 10. * You recorded your position with respect to...Ch. 2 - * You need to determine the time interval (in...Ch. 2 - A speedometer reads 65 ml/h. (a) Use as many...Ch. 2 - 13. Convert the following record speeds so that...Ch. 2 - 15. * BIO A kidnapped banker looking through a...Ch. 2 - 16 * Some computer scanners scan documents by...Ch. 2 - 18. * Your friend’s pedometer shows that he took...Ch. 2 - During a hike, two friends were caught in a...Ch. 2 - 20. Light travels at a speed of m/s in a vacuum....Ch. 2 - 21. Proxima Centauri is light-years from Earth....Ch. 2 - * Spaceships traveling to other planets in the...Ch. 2 - 23. ** Figure P2.23 shows a velocity-versus-time...Ch. 2 - 24. * Table 2.9 shows position and time data for...Ch. 2 - 25. * Table 2.10 shows position and time data for...Ch. 2 - 26 * You are walking to your physics class at...Ch. 2 - * Gabriele enters an east-west straight bike path...Ch. 2 - * Jim is driving his car at 32 m/s (72 mi/h) along...Ch. 2 - 29. * You hike two-thirds of the way to the top or...Ch. 2 - 30. * Olympic champion swimmer Michael Phelps swam...Ch. 2 - 31. * A car makes a 100-Km trip. it travels the...Ch. 2 - * Jane and Bob see each other when 100m apart....Ch. 2 - 34. A car starts from rest and reaches the speed...Ch. 2 - A truck is traveling east at +16 m/s (a) The...Ch. 2 - 36. Bumper car collision on a bumper car ride,...Ch. 2 - A bus leaves an intersection accelerating at +2.0...Ch. 2 - A jogger is running at +4.0 m/s when a bus passes...Ch. 2 - 39. * The motion of a person as seen by another...Ch. 2 - While cycling at a speed of 10 m/s, a cyclist...Ch. 2 - * EST To his surprise, Daniel found that an egg...Ch. 2 - 42. BIO Squid propulsion Lolliguncula brevis squid...Ch. 2 - Dragster record on the desert In 1977, Kitty ONell...Ch. 2 - * Imagine that a sprinter accelerates from rest to...Ch. 2 - 45. ** Two runners are running next to each other...Ch. 2 - 46. * Meteorite hits car in 1992, a 14-kg...Ch. 2 - 47. BIO Froghopper jump A spittlebug called the...Ch. 2 - 48. Tennis serve The fastest server in women’s...Ch. 2 - 49. * Shot from a cannon in 1998, David...Ch. 2 - Col. John Stapps final sied run Col. John Stapp...Ch. 2 - 51. * Sprinter Usain Bolt reached a maximum speed...Ch. 2 - ** Imagine that Usain Bolt can reach his maximum...Ch. 2 - * A bus is moving at a speed of 36 km/h. How far...Ch. 2 - * EST You want to estimate how fast your car...Ch. 2 - * In your car, you covered 2.0 m during the first...Ch. 2 - 56. (a) Determine the acceleration of a car in...Ch. 2 - You accidentally drop an eraser out the window of...Ch. 2 - 58. * What is the average speed of the eraser in...Ch. 2 - 59. You throw a tennis ball straight upward. The...Ch. 2 - 60. While skydiving, your parachute opens and you...Ch. 2 - * After landing from your skydiving experience,...Ch. 2 - * You are standing on the rim of a canyon. You...Ch. 2 - 63. * You are doing an experiment to determine...Ch. 2 - EST Cliff divers Divers in Acapulco fall 36m from...Ch. 2 - 65. * Galileo dropped a light rock and a heavy...Ch. 2 - * A person holding a lunch bag is moving upward in...Ch. 2 - * A parachutist falling vertically at a constant...Ch. 2 - A diagram representing the motion of two cars is...Ch. 2 - Use the velocity-versus-time graph lines in Figure...Ch. 2 - * While babysitting their younger brother, Chrisso...Ch. 2 - 72. ** An object moves so that its position...Ch. 2 - * The positions of objects A and B with respect to...Ch. 2 - * Two cars on a straight road at time zero are...Ch. 2 - 75. * Oliver drops a tennis ball from a certain...Ch. 2 - 76. * BIO EST Water striders Water striders are...Ch. 2 - 77. You are traveling in your car at 20 m/s a...Ch. 2 - * You are driving a car behind another car. Both...Ch. 2 - 79. * A driver with a 0.80-s reaction time applies...Ch. 2 - 80. ** Some people in a hotel are dropping water...Ch. 2 - s acceleration if hitting an unprotected zygomatic...Ch. 2 - 82 ** EST A bottle rocket burns for 1.6s. After it...Ch. 2 - 83. * Data from state driver’s manual The state...Ch. 2 - 85. * Car A is heading east at 30 m/s and Car B is...Ch. 2 - BIO Head injuries in sports A research group at...Ch. 2 - BIO Head injuries in sports A research group at...Ch. 2 - BIO Head injuries in sports A research group at...Ch. 2 - BIO Head injuries in sports A research group at...Ch. 2 - BIO Head injuries in sports A research group at...Ch. 2 - Automatic sliding doors The first automatic...Ch. 2 -
Automatic sliding doors The first automatic...Ch. 2 - Automatic sliding doors The first automatic...Ch. 2 - Automatic sliding doors The first automatic...Ch. 2 - Automatic sliding doors The first automatic...Ch. 2 - Automatic sliding doors The first automatic...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Describe an example of bioconversion. What metabolic processes can result in fuels?
Microbiology: An Introduction
25. FIGURE EX4.25 shows the angular-velocity-versus-time graph for a particle moving in a circle, starting from...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
For parts a, b, and c, draw a diagram illustrating the alleleson homologous chromosomes for the following genot...
Genetic Analysis: An Integrated Approach (3rd Edition)
Use the following graph to answer questions 3 and 4. 3. Which of the lines best depicts the log phase of a ther...
Microbiology: An Introduction
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
1. Write a single sentence, using no more than 25 words, to summarize each of the following cellular processes...
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An athlete crosses a 25-m-wide river by swimming perpendicular to the water current at a speed of 0.5 m/s relative to the water. He reaches the opposite side at a distance 40 m downstream from his starting point. How fast is the water in the river flowing with respect to the ground? What is the speed of the swimmer with respect to a friend at rest on the ground?arrow_forwardA pirate has buried his treasure on an island with five trees located at the points (30.0 m, 20.0 m), (60.0 m, 80.0 m). (10.0 m, 10.0 m), (40.0 m, 30.0 m), and (70.0 m, 60.0 m), all measured relative to some origin, as shown in Figure P3.46. His ships log instructs you to start at tree A and move toward tree B, but to cover only one-half the distance between A and B. Then move toward tree C, covering one-third the distance between your current location and C. Next move toward tree D, covering one-fourth the distance between where you are and D. Finally move toward tree E, covering one-fifth the distance between you and E, stop, and dig. (a) Assume you have correctly determined the order in which the pirate labeled the trees as A, B, C, D, and E as shown in the figure. What are the coordinates of the point where his treasure is buried? (b) What If? What if you do not really know the way the pirate labeled the trees? What would happen to the answer if you rearranged the order of the trees, for instance, to B (30 m, 20 m), A (60 m, 80 m), E (10 m, 10 m), C (40 m, 30 m), and D (70 m, 60 m)? State reasoning to show that the answer does not depend on the order in which the trees are labeled. Figure P3.46arrow_forwardYou are at the top of the Empire State Building on the 102nd floor, which is located 373 m above the ground, when your favorite superhero flies over the building parallel to the ground at 60.0 % the speed of light. Review You have never seen your favorite superhero in real life. Out of curiosity you calculate her height to be 1.76 m. If the superhero landed next to you, how tall would she be when standing? ► View Available Hint(s) O O O O 2.20 m 1.76 m 1.39 m 1.41 m Submit ▾ Part B What is the height of the 102nd floor of the Empire State Building as measured by the superhero while flying above it? ▸ View Available Hint(s) O 373 m O 298 m O 236 m O 239 m Submit P Pearsonarrow_forward
- Daniel takes his two dogs, Pauli the Pointer and Newton the Newfoundland, out to a field and lets them loose to exercise. Both dogs sprint away in different directions while Daniel stands still. From Daniel's point of view, Newton runs due North at 4.65 m/s, but from Pauli's point of view, Newton appears to be moving at 2.10 m/s due East. What must Pauli's velocity relative to Daniel be for this to be true? Express your answer in terms of the x- and y-components if North is the +y-direction and East is the +x-direction. x-component: m/s Y-component: m/s Express your answer as a magnitude and an angle measured counter-clockwise from due East. magnitude & direction: at a angle counter-clockwise from due Eastarrow_forward1. The motions of two objects, A and B, are defined by the following vectors: Vector A = 6.0622i + 3.500j m/s Vector B = 5.9500i – 10.3057j m/s Unit vector of bullet = -j Object A and B left at the same time and at the same point. a. Object A aims to hit object B by firing a bullet in the direction stated above after 20 seconds. What should be the velocity of the bullet so that it will hit object B? b. What is the distance between object A and B the moment the bullet hits object B? c. What is the angle between the paths of motion of objects A and B? d. What is the velocity vector of the bullet? (Referring to question a) 2. Position vectors of two particles, A and B are given: A = 3i + 4j + 5k meters B = -4i + 2j – 7k meters Vector C is the position vector of particle C that is the cross product of vectors A and B (C = A x B). Together, particles A, B, and C become vertices of a triangular plane in space. a. What is the perimeter of the triangle that is formed by the three particles? b.…arrow_forwardDuring a lecture demonstration, a professor places two coins on the edge of a table 1.3m above the floor. She then flicks one of the coins horizontally off the table so it is moving at 5.0 m/s horizontally when it leaves the table. Simultaneously she gently nudges the other coin over the edge. Which coin hits the floor first? a. The coin gently nudged over the side. b. The coin flicked horizontally. c. They hit the floor at the same time.arrow_forward
- 1. Two cars are approaching an intersection along perpendicular roads. Car A is moving eastward at a speed of 25 [m/s] while car B is moving northward with speed 15.8 [m/s]. What is the velocity of car A relative to car B in component representation? O A. 25 [m/s] 2 - 15.8 [m/s] O B. -25 [m/s]î - 15.8 [m/s] O c. 25 [m/s] 2 + 15.8 [m/s]ĵ O D. 25 [m/s] 2 + 15.8 [m/s]arrow_forwardDaniel takes his two dogs, Pauli the Pointer and Newton the Newfoundland, out to a field and lets them loose to exercise. Both dogs sprint away in different directions while Daniel stands still. From Daniel's point of view, Newton runs due North at 3.90m/s, but from Pauli's point of view, Newton appears to be moving at 1.50 m/s due East. What must Pauli's velocity relative to Daniel be for this to be true? Express your answer in terms of the ? and ?‑components if North is the +? direction and East is the +? direction. a) ?-component (m/s): ?-component (m/s): b) Express your answer as a magnitude and an angle measured counter‑clockwise from due East.arrow_forwardYou encounter a moving walkway that is 81 m long and has a speed of 2.1 m/s relative to the ground. How long would it take you to cover the 81 m length of the walkway if, once you get on the walkway, you immediately turn around and start walking in the opposite direction with a speed of 1.6 m/s relative to the walkway? Express your answer using one significant figure.arrow_forward
- You are in a submarine on the water surface of the ocean. Your radar spots a giant squid at rest that you want to explore. The squid is located 200 m straight ahead on the water surface and 300 m below the sea level. a) Draw a diagram showing the submarine, the squid, the net displacement. What is the magnitude of the net displacement between you and the squid in meters?arrow_forwardAn astronaut in deep space is at rest relative to a nearby space station. The astronaut needs to return to the space station. A student makes the following claim: “The astronaut should position her feet pointing away from the space station. Then, she should repeatedly move her feet in the opposite direction to each other. This action will propel the astronaut toward the space station.” Is the student’s claim correct? Justify your selection. a Yes. The astronaut’s feet will have a velocity that is transferred to her center of mass, accelerating the astronaut toward the space station. b No. The astronaut would move away from the space station, not toward it, since her feet are pointed away from the space station. c Yes. The astronaut’s feet exert a force away from the space station, creating an equal and opposite force that will accelerate the astronaut toward the space station. d No. The astronaut’s feet are not exerting a force on another object, so…arrow_forwardWhen a vehicle is traveling with a speed of v = 10 m / s, a stone is thrown over it with a speed of v = 40 m / s. Since the person standing on the ground sees that the stone moves vertically upwards, what is the angle Ɵ of the stone's shot angle with the car surface? g = 10 m / s2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Vectors and 2D Motion: Crash Course Physics #4; Author: CrashCourse;https://www.youtube.com/watch?v=w3BhzYI6zXU;License: Standard YouTube License, CC-BY