Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19.5, Problem 19.130P
To determine
Show that logarithmic decrement can be expressed as
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An oscillator system without damping has a natural frequency of omega 0 = pi rad/s. Several types of attenuation are given to the system to provide a damping factor (y) of 0.1, 0.5 and 1 s^-1. (a) For each damping factor value, determine the omega value of the oscillator!. (b) determine the displacement at time t = 2 seconds for the damping factor y = 0.5 , if the displacement at t = O is 30 mm and v = 1.5 m/s
For the free vibration of a SDOF system, the two amplitudes are measured at the instants 1.8 s and 12.8 s as shown in the Fig. (c). The said amplitudes (in mm) and the number of cycles of oscillation can be noted from the Fig (c). Find the un-damped natural frequency and the damping ratio ξ for this system.
A compact object with a mass of 8.80 kg oscillates at the end of a vertical spring with a spring constant of 1.60 ✕ 104 N/m. The motion is damped by air resistance, and the damping coefficient is b = 3.00 N · s/m.
(a)
What is the frequency (in Hz) of the damped oscillation?
Hz
(b)
By what percentage does the amplitude of the oscillation decrease in each cycle?
%
(c)
Over what time interval (in s) does the energy of the system drop to 5.00% of its initial value?
s
(d)
What If? The atmosphere of Venus is 50 times thicker than that on Earth. If the effect of air resistance on Venus is represented by b = 150 N · s/m, recalculate the answers for parts (a) to (c) for this system if it is set in motion in the atmosphere of Venus.
What is the frequency (in Hz) of the damped oscillations?
Hz
What is the percentage decrease in amplitude in each cycle?
%
What is the time interval (in s) for the energy to drop to 5.00% of its initial value?
s
Chapter 19 Solutions
Vector Mechanics for Engineers: Dynamics
Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - Prob. 19.3PCh. 19.1 - Prob. 19.4PCh. 19.1 - Prob. 19.5PCh. 19.1 - Prob. 19.6PCh. 19.1 - A simple pendulum consisting of a bob attached to...Ch. 19.1 - A simple pendulum consisting of a bob attached to...Ch. 19.1 - A 10-Ib block A rests on a 40-Ib plate B that is...Ch. 19.1 - A 5-kg fragile glass vase is surrounded by packing...
Ch. 19.1 - Prob. 19.11PCh. 19.1 - Prob. 19.12PCh. 19.1 - Prob. 19.13PCh. 19.1 - Prob. 19.14PCh. 19.1 - Prob. 19.15PCh. 19.1 - Prob. 19.16PCh. 19.1 - Prob. 19.17PCh. 19.1 - Prob. 19.18PCh. 19.1 - Prob. 19.19PCh. 19.1 - Prob. 19.20PCh. 19.1 - A 50-kg block is supported by the spring...Ch. 19.1 - Prob. 19.22PCh. 19.1 - Two springs with constants k1and k2are connected...Ch. 19.1 - Prob. 19.24PCh. 19.1 - Prob. 19.25PCh. 19.1 - Prob. 19.26PCh. 19.1 - Prob. 19.27PCh. 19.1 - From mechanics of materials it is known that when...Ch. 19.1 - Prob. 19.29PCh. 19.1 - Prob. 19.30PCh. 19.1 - Prob. 19.31PCh. 19.1 - Prob. 19.32PCh. 19.1 - Prob. 19.33PCh. 19.1 - Prob. 19.34PCh. 19.1 - Using the data of Table 19.1, determine the period...Ch. 19.1 - Prob. 19.36PCh. 19.2 - The uniform rod shown has mass 6 kg and is...Ch. 19.2 - Prob. 19.38PCh. 19.2 - A 6-kg uniform cylinder can roll without sliding...Ch. 19.2 - A 6-kg uniform cylinder is assumed to roll without...Ch. 19.2 - Prob. 19.41PCh. 19.2 - Prob. 19.42PCh. 19.2 - A square plate of mass m is held by eight springs,...Ch. 19.2 - Prob. 19.44PCh. 19.2 - Prob. 19.45PCh. 19.2 - Prob. 19.46PCh. 19.2 - Prob. 19.47PCh. 19.2 - Prob. 19.48PCh. 19.2 - Prob. 19.49PCh. 19.2 - Prob. 19.50PCh. 19.2 - A thin homogeneous wire is bent into the shape of...Ch. 19.2 - A compound pendulum is defined as a rigid body...Ch. 19.2 - Prob. 19.53PCh. 19.2 - Prob. 19.54PCh. 19.2 - Prob. 19.55PCh. 19.2 - Two uniform rods each have a mass m and length I...Ch. 19.2 - Prob. 19.57PCh. 19.2 - A 1300-kg sports car has a center of gravity G...Ch. 19.2 - A 6-lb slender rod is suspended from a steel wire...Ch. 19.2 - A uniform disk of radius r=250 mm is attached at A...Ch. 19.2 - Prob. 19.61PCh. 19.2 - Prob. 19.62PCh. 19.2 - Prob. 19.63PCh. 19.2 - Prob. 19.64PCh. 19.2 - A 5-kg uniform rod CD of length l=0.7 m is welded...Ch. 19.2 - A uniform equilateral triangular plate with a side...Ch. 19.2 - Prob. 19.67PCh. 19.2 - Prob. 19.68PCh. 19.3 - Prob. 19.69PCh. 19.3 - Prob. 19.70PCh. 19.3 - Prob. 19.71PCh. 19.3 - Prob. 19.72PCh. 19.3 - Prob. 19.73PCh. 19.3 - Prob. 19.74PCh. 19.3 - Prob. 19.75PCh. 19.3 - A homogeneous wire of length 2l is bent as shown...Ch. 19.3 - A uniform disk of radius r and mass m can roll...Ch. 19.3 - Prob. 19.78PCh. 19.3 - Prob. 19.79PCh. 19.3 - Prob. 19.80PCh. 19.3 - A slender 10-kg bar AB with a length of l=0.6 m is...Ch. 19.3 - Prob. 19.82PCh. 19.3 - Prob. 19.83PCh. 19.3 - Prob. 19.84PCh. 19.3 - Prob. 19.85PCh. 19.3 - Prob. 19.86PCh. 19.3 - Prob. 19.87PCh. 19.3 - Prob. 19.88PCh. 19.3 - Prob. 19.89PCh. 19.3 - Prob. 19.90PCh. 19.3 - Prob. 19.91PCh. 19.3 - Prob. 19.92PCh. 19.3 - The motion of the uniform rod AB is guided by the...Ch. 19.3 - Prob. 19.94PCh. 19.3 - Prob. 19.95PCh. 19.3 - Prob. 19.96PCh. 19.3 - Prob. 19.97PCh. 19.3 - Prob. 19.98PCh. 19.4 - Prob. 19.99PCh. 19.4 - Prob. 19.100PCh. 19.4 - Prob. 19.101PCh. 19.4 - Prob. 19.102PCh. 19.4 - Prob. 19.103PCh. 19.4 - Prob. 19.104PCh. 19.4 - Prob. 19.105PCh. 19.4 - Prob. 19.106PCh. 19.4 - Prob. 19.107PCh. 19.4 - The crude-oil pumping rig shown is driven at 20...Ch. 19.4 - Prob. 19.109PCh. 19.4 - Prob. 19.110PCh. 19.4 - Prob. 19.111PCh. 19.4 - Prob. 19.112PCh. 19.4 - Prob. 19.113PCh. 19.4 - Prob. 19.114PCh. 19.4 - Prob. 19.115PCh. 19.4 - Prob. 19.116PCh. 19.4 - Prob. 19.117PCh. 19.4 - Prob. 19.118PCh. 19.4 - Prob. 19.119PCh. 19.4 - Prob. 19.120PCh. 19.4 - Prob. 19.121PCh. 19.4 - Prob. 19.122PCh. 19.4 - Prob. 19.123PCh. 19.4 - Prob. 19.124PCh. 19.4 - Prob. 19.125PCh. 19.4 - A small trailer and its load have a total mass of...Ch. 19.5 - Prob. 19.127PCh. 19.5 - Prob. 19.128PCh. 19.5 - Prob. 19.129PCh. 19.5 - Prob. 19.130PCh. 19.5 - Prob. 19.131PCh. 19.5 - Prob. 19.132PCh. 19.5 - Prob. 19.133PCh. 19.5 - Prob. 19.134PCh. 19.5 - Prob. 19.135PCh. 19.5 - Prob. 19.136PCh. 19.5 - Prob. 19.137PCh. 19.5 - A 0.9-kg block B is connected by a cord to a...Ch. 19.5 - Prob. 19.139PCh. 19.5 - Prob. 19.140PCh. 19.5 - Prob. 19.141PCh. 19.5 - Prob. 19.142PCh. 19.5 - Prob. 19.143PCh. 19.5 - Prob. 19.144PCh. 19.5 - Prob. 19.145PCh. 19.5 - Prob. 19.146PCh. 19.5 - Prob. 19.147PCh. 19.5 - Prob. 19.148PCh. 19.5 - A simplified model of a washing machine is shown....Ch. 19.5 - Prob. 19.150PCh. 19.5 - Prob. 19.151PCh. 19.5 - Prob. 19.152PCh. 19.5 - Prob. 19.153PCh. 19.5 - Prob. 19.154PCh. 19.5 - Prob. 19.155PCh. 19.5 - Prob. 19.156PCh. 19.5 - Write the differential equations defining (a) the...Ch. 19.5 - Write the differential equations defining (a) the...Ch. 19 - Prob. 19.159RPCh. 19 - Prob. 19.160RPCh. 19 - Prob. 19.161RPCh. 19 - Prob. 19.162RPCh. 19 - Prob. 19.163RPCh. 19 - Prob. 19.164RPCh. 19 - A 4-lb uniform rod is supported by a pin at O and...Ch. 19 - Prob. 19.166RPCh. 19 - Prob. 19.167RPCh. 19 - Prob. 19.168RPCh. 19 - Prob. 19.169RPCh. 19 - Prob. 19.170RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The amplitude of vibration of a single degree of freedom spring-mass-damper system is observed to reduce to 15% of its initial value after 5 cycles. Spring stiffness equals (1516) N/m and mass equals (23.5 ) kg. Determine: The undamped natural frequency; The damped natural frequency; The logarithmic decrement; The damping ratio; and The coefficient of dampingarrow_forwardMechanical Vibrationsarrow_forwardA 50 kg dough machine is mounted on an elastic support and opera to a speed of 1000 rpm. It has an unbalanced mass of 2 kg at an eccentric distance of 0.1 meter. If the damping factor ℶ = 0.2, determine: a) the constant of the support spring (without damping) which only transmits only up to 28% of the unbalanced force to the foundation, b) the resonant frequency in rpm, and c) the magnitude of the force transmitted with the complete suspension d) Illustrate using graphicsarrow_forward
- I9arrow_forwardA block attached to a spring, oscillates on a frictionless horizontal surface with a period of 0.45 s. The time needed by the block to move (for the first time) from position x = A to x = -A/2 is: 0.2 sec 0.15 sec 0.05 sec 0.3 sec 0.1 secarrow_forwardMECHANICAL VIBRATIONSarrow_forward
- The logarithmic decrement of damping of a tuning fork oscillating with a frequency 1,1 Hz is 5. After what time interval will the amplitude of the tuning fork oscillations decrease by 7.1 times? Assume that the period of damped oscillations is close to the period of free undamped oscillations.arrow_forwardassuming that mass = 2150 kg K = 80.98 N/mm C =21.19 N/mm.arrow_forwardProblem 2. A projectile of mass m = 10 kg travelling with a velocity of 50m/s strikes and becomes embedded in a massless board supported by a spring of stiffness k-6.4x 104 N/m and a dashpot with damping coefficient, c. a) Determine the damping coefficient, c, for the fastest decay of the vibrations. b) For the value of c calculated above, determine the time required for the board to reach the maximum displacement. What is the value of the maximum displacement? (Hint: Velocity will be zero at the point of maximum displacement) c) [Bonus] What percentage of energy has been dissipated at the point of maximum displacement?arrow_forward
- 1. A system consists of a mass, a spring, and a dashpot. The mass weighs 19.3 lb. The spring constant of the spring is 45 lb/in. The damping constant of the dashpot is .06 lb*s/in. The amplitude of the first cycle is 3 inches. Find the amplitude 12 cycles later.arrow_forwardA single degree of freedom system with mass of 100 Kg, a damping ratio of 0.707 tf and a natural frequency of 8 HZ. The base of the system is excited with a frequency of 80 rad/s, The natural frequency of the system in rad/s Choose... is The value of the stiffness of the system is (N/m) Choose... The damper of the system (in kg/s) is Choose... The frequency ratio is Choose..arrow_forwardassuming that mass = 2150 kg K = 80.98 N/mm C =21.19 N/mm Please answer correctly please.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY