College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 19, Problem 2CQ
The energy that can be extracted from a storage battery is always less than the energy that goes into it while it is being charged Why?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 19 Solutions
College Physics (10th Edition)
Ch. 19 - You create a circuit with three resistors and a...Ch. 19 - The energy that can be extracted from a storage...Ch. 19 - A cylindrical rod has resistivity p. If we triple...Ch. 19 - True or false? (a) Adding more resistance to a...Ch. 19 - Why does the resistance of an object increase with...Ch. 19 - How does a capacitor store energy? Can a resistor...Ch. 19 - High-voltage power supplies are sometimes designed...Ch. 19 - If you charge a capacitor through an R-C circuit,...Ch. 19 - Can all combinations of resistors be reduced to...Ch. 19 - In a two-cell flashlight, the batteries are...
Ch. 19 - You connect a number of identical light bulbs to a...Ch. 19 - When you scuff your shoes across a nylon carpet,...Ch. 19 - A cylindrical metal rod has a resistance R. If...Ch. 19 - A resistor R and another resistor 2R are connected...Ch. 19 - Which statements about the circuit shown in Figure...Ch. 19 - When the switch in Figure 19.40 is closed, the...Ch. 19 - Three identical light bulbs are connected in the...Ch. 19 - You connect three resistors with resistances R,...Ch. 19 - In the circuit shown in Figure 19.42, resistor A...Ch. 19 - In which of the two circuits shown in Figure 19.43...Ch. 19 - The battery shown in the circuit in Figure 19.44...Ch. 19 - A battery with no internal resistance is connected...Ch. 19 - The battery shown in the circuit in Figure 19.46...Ch. 19 - Three identical light bulbs. A, B, and C, are...Ch. 19 - A 5.0 A current flows through the leads of an...Ch. 19 - Lightning strikes. During lightning strikes from a...Ch. 19 - Transmission of nerve impulses. Nerve cells...Ch. 19 - In an ionic solution, a current consists of Ca2+...Ch. 19 - A 14 gauge copper wire of diameter 1.628 mm...Ch. 19 - You want to precut a set of 1.00 strips of 14...Ch. 19 - Prob. 7PCh. 19 - A tightly coiled spring having 75 coils, each 3.50...Ch. 19 - Prob. 9PCh. 19 - Prob. 10PCh. 19 - A steel wire of length L and radius r1 has a...Ch. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - A 1.50 m cylindrical rod of diameter 0.500 cm is...Ch. 19 - Prob. 15PCh. 19 - In a laboratory experiment, you vary the current...Ch. 19 - The following measurements of current and...Ch. 19 - Prob. 18PCh. 19 - Current in the body. The resistance of the body...Ch. 19 - A copper transmission cable 100 km long and 10.0...Ch. 19 - Prob. 21PCh. 19 - A steel wire, of length L and diameter D, has a...Ch. 19 - A 6.00 V lantern battery is connected to a 10.5 ...Ch. 19 - When the switch in Figure 19.49 is open, the...Ch. 19 - A non-ideal 10.0 V battery is connected across a...Ch. 19 - Prob. 26PCh. 19 - An automobile starter motor is connected to a 12.0...Ch. 19 - Consider the circuit shown in Figure 19.50. The...Ch. 19 - Prob. 29PCh. 19 - Power rating of a resistor. The power rating of a...Ch. 19 - An idealized voltmeter is connected across the...Ch. 19 - Treatment of heart failure. A heart defibrillator...Ch. 19 - Light bulbs. The wattage rating of a light bulb is...Ch. 19 - Electrical safety. This procedure is not...Ch. 19 - Electric eels. Electric eels generate electric...Ch. 19 - A 500 and a 200 resistor are connected in series...Ch. 19 - The battery for a certain cell phone is rated at...Ch. 19 - For the circuit in Figure 19.51, find (a) the rate...Ch. 19 - A 240 W electric heater is designed to operate...Ch. 19 - Find the equivalent resistance of each combination...Ch. 19 - Calculate the (a) maximum and (b) minimum values...Ch. 19 - Each of two identical uniform metal bars has a...Ch. 19 - A 40.0 resistor and a 90.0 resistor are...Ch. 19 - Three resistors having resistances of 1.60 , 2.40...Ch. 19 - Now the three resistors of the previous problem...Ch. 19 - Compote the equivalent resistance of the network...Ch. 19 - Compute me equivalent resistance of me network in...Ch. 19 - Light bulbs in aeries. I he power rating or o...Ch. 19 - Prob. 49PCh. 19 - The batteries shown in the circuit in Figure 19.50...Ch. 19 - Find the emfs 1 and 2 in the circuit shown in...Ch. 19 - For the circuit shown in Figure 19.58, calculate...Ch. 19 - In the circuit shown in Figure 19.59, find (a) the...Ch. 19 - In the circuit shown in Figure 19.60, current...Ch. 19 - In the circuit shown in Figure 19.61, the 6.0 ...Ch. 19 - A 500.0 resistor is connected in series with a...Ch. 19 - A fully charged 6.0 F capacitor is connected in...Ch. 19 - A 12.4 F capacitor is connected through a 0.895 M...Ch. 19 - A 6.00 F capacitor that is initially uncharged is...Ch. 19 - A capacitor is charged to a potential of 12.0 V...Ch. 19 - A 1.0 F capacitor is being charged by a 9.0 V...Ch. 19 - In the circuit shown in Figure 19.62. the...Ch. 19 - Charging and discharging a capacitor. A 1.50 F...Ch. 19 - Graphing the charge on a capacitor as a function...Ch. 19 - The circuit shown in Figure 19.63 contains two...Ch. 19 - If an ohmmeter is connected between points a and b...Ch. 19 - A refrigerator draws 3.5 A of current while...Ch. 19 - A toaster using a NichromeTM heating element...Ch. 19 - A piece of wire has a resistance R. It is cut into...Ch. 19 - Flashlight batteries. A typical small flashlight...Ch. 19 - In the circuit of Figure 19.65. find (a) the...Ch. 19 - Struck by lightning. Lightning strikes can involve...Ch. 19 - Each of the three resistors m Figure 19.66 has a...Ch. 19 - Energy use of homo appliances. An 1800 W toaster,...Ch. 19 - Two identical 1.00 wires are lad side by side aid...Ch. 19 - Three identical resistors are connected in series....Ch. 19 - (a) Calculate the equivalent resistance of the...Ch. 19 - A power plant transmits 150 kW of power to a...Ch. 19 - What must the emf in Figure 19.69e be in order...Ch. 19 - For the circuit shown in Figuro 19.70. if a...Ch. 19 - A 4600 resistor is connected across a charged...Ch. 19 - A capacitor that is initially uncharged is...Ch. 19 - In the circuit shown in Figure 10.71. R it a...Ch. 19 - Spiderweb conductivity. Some types of spiders...Ch. 19 - If the conductivity of the thread results from the...Ch. 19 - Prob. 86PPCh. 19 - In another experiment, a piece of the web is...Ch. 19 - Nerve cells and R - C circuits. The portion of a...Ch. 19 - In a simple model of an axon conducting a nerve...Ch. 19 - Nerve cells and R-C circuits. The portion of a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Q16.5 Symphonic musicians always “warm up” their wind instruments by blowing into them before a performance. Wh...
University Physics (14th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
As your plane accelerates down the runway, you take your keys from your pocket and suspend them by a thread. Do...
Essential University Physics: Volume 1 (3rd Edition)
A 0.25-kg skeet (clay target) is fired at an angle of 28 to the horizon with a speed of 25 m/s (Fig. 9–54). Whe...
Physics for Scientists and Engineers with Modern Physics
32. What hanging mass will stretch a 2.0-m-long, 0.50-mm-diameter steel wire by 1.0 mm?
College Physics: A Strategic Approach (3rd Edition)
Which Moon position (F–l) best corresponds with the Moon phase shown in the upper-right corner of Figure 2?
Ent...
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Why do we need to be careful about work done on the system versus work done by the system in calculations?arrow_forwardA 10.0-F capacitor is charged to 15.0 V. It is next connected in series with an uncharged 5.00-F capacitor. The series combination is finally connected across a 50.0-V battery as diagrammed in Figure P20.83. Find the new potential differences across the 5.00-F and 10.0-F capacitors after the switch is thrown closed. Figure P20.83arrow_forwardA parallel-plate capacitor is charged and then is disconnected from the battery. By what factor does the stored energy change when the plate separation is then doubled? (a) It becomes four times larger. (b) It becomes two times larger. (c) It stays the same. (d) It becomes one-half as large. (e) It becomes one-fourth as large.arrow_forward
- The immediate cause of many deaths is ventricular fibrillation, an uncoordinated quivering of the heart, as opposed to proper beating. An electric shock to the chest can cause momentary paralysis of the heart muscle, after which the heart will sometimes start organized beating again. A defibrillator is a device that applies a strong electric shock to the chest over a time of a few milliseconds. The device contains a capacitor of a few microfarads, charged to several thousand volts. Electrodes called paddles, about 8 cm across and coated with conducting paste, are held against the chest on both sides of the heart. Their handles are insulated to prevent injury to the operator, who calls Clear! and pushes a button on one paddle to discharge the capacitor through the patient's chest Assume an energy of 3.00 102 W s is to be delivered from a 30.0-F capacitor. To what potential difference must it be charged?arrow_forwardA 10.0-F capacitor is charged to 15.0 V. It is next connected in series with an uncharged 5.00-F capacitor. The series combination is finally connected across a 50.0-V battery as diagrammed in Figure P26.63. Find the new potential differences across the 5.00-F and 10.0-F capacitors after the switch is thrown closed.arrow_forwardA 4.00F capacitor and a 6.00F capacitor are connected in parallel across a 600-V supply line, (a) Find the charge on each capacitor and voltage across each, (b) The charged capacitors are disconnected from the line and from each other. They are then reconnected to each other with terminals of unlike sign together. Find the final charge on each capacitor and the voltage across each.arrow_forward
- When a Leyden jar is charged by a hand generator (Fig. 27.1, page 828), the work done by the person turning the crank is stored as electric potential energy in the jar. When a capacitor is charged by a battery, where does the electric potential energy come from?arrow_forwardA parallel-plate capacitor is connected to a battery. What happens to the stored energy if the plate separation is doubled while the capacitor remains connected to the battery? (a) It remains the same. (b) It is doubled. (c) It decreases by a factor of 2. (d) It decreases by a factor of 4. (e) It increases by a factor of 4.arrow_forwardFind the total capacitance of the combination of capacitors shown in Figure 19.34. Figure 19.34 A combination of series and parallel connections of capacitors.arrow_forward
- A variable air capacitor used in a radio tuning circuit is made of N semicircular plates, each of radius R and positioned a distance d from its neighbors, to which it is electrically connected. As shown in Figure P20.38, a second identical set of plates is enmeshed with the first set. Each plate in the second set is halfway between two plates of the first set. The second set can rotate as a unit. Determine the capacitance as a function of the angle of rotation , where = 0 corresponds to the maximum capacitance. Figure P20.38arrow_forwardConsider the circuit shown in Figure P20.52, where C1 = 6.00 F, C2 = 3.00 F, and V = 20.0 V. Capacitor C1 is first charged by closing switch S1. Switch S1 is then opened, and the charged capacitor is connected to the uncharged capacitor by closing S2. Calculate (a) the initial charge acquired by C1 and (b) the final charge on each capacitor. Figure P20.52arrow_forwardA pair of capacitors with capacitances CA = 3.70 F and CB = 6.40 F are connected in a network. What is the equivalent capacitance of the pair of capacitors if they are connected a. in parallel and b. in series?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY