College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
thumb_up100%
Chapter 19, Problem 24P
When the switch in Figure 19.49 is open, the voltmeter V across the battery reads 3.08 V. When the switch is closed, the voltmeter reading drops to 2.97 V and the ammeter A reads 1.65 A. Find the emf, the internal resistance of the battery, and the circuit resistance R. Assume that the two meters are ideal, so that they don’t affect the circuit.
Figure 19.49
Problem 24
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
18 For the circuit shown in the figure, what current does the ideal ammeter read in (mA)?
90.00
dzere
100 V
1074
80.00
22 µF
$0.00
90.00
19. For the circuit shown in the figure, the switch S is initially open and the capacitor voltage is 80 V.
The switch is then closed at time t-0. How long in (s) after closing the switch will the current in
the resistor be 7 µA?
€7
3.0 V
2.8 ΜΩ
The voltmeter V reads 3.11V, when switch S is open . When the switch is closed, the voltmeter reading drops to 2.88 , and the ammeter A reads 1.61. Assume that the two meters are ideal, so they don't affect the circuit. Find the internal resistance of the battery.
2.34 ohm
0.98ohm
0.14 ohm
0.52ohm
1.23ohm
Which graph best represents the the magnitude of the voltage measured across the resistor by the voltmeter labeled VR?
Chapter 19 Solutions
College Physics (10th Edition)
Ch. 19 - You create a circuit with three resistors and a...Ch. 19 - The energy that can be extracted from a storage...Ch. 19 - A cylindrical rod has resistivity p. If we triple...Ch. 19 - True or false? (a) Adding more resistance to a...Ch. 19 - Why does the resistance of an object increase with...Ch. 19 - How does a capacitor store energy? Can a resistor...Ch. 19 - High-voltage power supplies are sometimes designed...Ch. 19 - If you charge a capacitor through an R-C circuit,...Ch. 19 - Can all combinations of resistors be reduced to...Ch. 19 - In a two-cell flashlight, the batteries are...
Ch. 19 - You connect a number of identical light bulbs to a...Ch. 19 - When you scuff your shoes across a nylon carpet,...Ch. 19 - A cylindrical metal rod has a resistance R. If...Ch. 19 - A resistor R and another resistor 2R are connected...Ch. 19 - Which statements about the circuit shown in Figure...Ch. 19 - When the switch in Figure 19.40 is closed, the...Ch. 19 - Three identical light bulbs are connected in the...Ch. 19 - You connect three resistors with resistances R,...Ch. 19 - In the circuit shown in Figure 19.42, resistor A...Ch. 19 - In which of the two circuits shown in Figure 19.43...Ch. 19 - The battery shown in the circuit in Figure 19.44...Ch. 19 - A battery with no internal resistance is connected...Ch. 19 - The battery shown in the circuit in Figure 19.46...Ch. 19 - Three identical light bulbs. A, B, and C, are...Ch. 19 - A 5.0 A current flows through the leads of an...Ch. 19 - Lightning strikes. During lightning strikes from a...Ch. 19 - Transmission of nerve impulses. Nerve cells...Ch. 19 - In an ionic solution, a current consists of Ca2+...Ch. 19 - A 14 gauge copper wire of diameter 1.628 mm...Ch. 19 - You want to precut a set of 1.00 strips of 14...Ch. 19 - Prob. 7PCh. 19 - A tightly coiled spring having 75 coils, each 3.50...Ch. 19 - Prob. 9PCh. 19 - Prob. 10PCh. 19 - A steel wire of length L and radius r1 has a...Ch. 19 - Prob. 12PCh. 19 - Prob. 13PCh. 19 - A 1.50 m cylindrical rod of diameter 0.500 cm is...Ch. 19 - Prob. 15PCh. 19 - In a laboratory experiment, you vary the current...Ch. 19 - The following measurements of current and...Ch. 19 - Prob. 18PCh. 19 - Current in the body. The resistance of the body...Ch. 19 - A copper transmission cable 100 km long and 10.0...Ch. 19 - Prob. 21PCh. 19 - A steel wire, of length L and diameter D, has a...Ch. 19 - A 6.00 V lantern battery is connected to a 10.5 ...Ch. 19 - When the switch in Figure 19.49 is open, the...Ch. 19 - A non-ideal 10.0 V battery is connected across a...Ch. 19 - Prob. 26PCh. 19 - An automobile starter motor is connected to a 12.0...Ch. 19 - Consider the circuit shown in Figure 19.50. The...Ch. 19 - Prob. 29PCh. 19 - Power rating of a resistor. The power rating of a...Ch. 19 - An idealized voltmeter is connected across the...Ch. 19 - Treatment of heart failure. A heart defibrillator...Ch. 19 - Light bulbs. The wattage rating of a light bulb is...Ch. 19 - Electrical safety. This procedure is not...Ch. 19 - Electric eels. Electric eels generate electric...Ch. 19 - A 500 and a 200 resistor are connected in series...Ch. 19 - The battery for a certain cell phone is rated at...Ch. 19 - For the circuit in Figure 19.51, find (a) the rate...Ch. 19 - A 240 W electric heater is designed to operate...Ch. 19 - Find the equivalent resistance of each combination...Ch. 19 - Calculate the (a) maximum and (b) minimum values...Ch. 19 - Each of two identical uniform metal bars has a...Ch. 19 - A 40.0 resistor and a 90.0 resistor are...Ch. 19 - Three resistors having resistances of 1.60 , 2.40...Ch. 19 - Now the three resistors of the previous problem...Ch. 19 - Compote the equivalent resistance of the network...Ch. 19 - Compute me equivalent resistance of me network in...Ch. 19 - Light bulbs in aeries. I he power rating or o...Ch. 19 - Prob. 49PCh. 19 - The batteries shown in the circuit in Figure 19.50...Ch. 19 - Find the emfs 1 and 2 in the circuit shown in...Ch. 19 - For the circuit shown in Figure 19.58, calculate...Ch. 19 - In the circuit shown in Figure 19.59, find (a) the...Ch. 19 - In the circuit shown in Figure 19.60, current...Ch. 19 - In the circuit shown in Figure 19.61, the 6.0 ...Ch. 19 - A 500.0 resistor is connected in series with a...Ch. 19 - A fully charged 6.0 F capacitor is connected in...Ch. 19 - A 12.4 F capacitor is connected through a 0.895 M...Ch. 19 - A 6.00 F capacitor that is initially uncharged is...Ch. 19 - A capacitor is charged to a potential of 12.0 V...Ch. 19 - A 1.0 F capacitor is being charged by a 9.0 V...Ch. 19 - In the circuit shown in Figure 19.62. the...Ch. 19 - Charging and discharging a capacitor. A 1.50 F...Ch. 19 - Graphing the charge on a capacitor as a function...Ch. 19 - The circuit shown in Figure 19.63 contains two...Ch. 19 - If an ohmmeter is connected between points a and b...Ch. 19 - A refrigerator draws 3.5 A of current while...Ch. 19 - A toaster using a NichromeTM heating element...Ch. 19 - A piece of wire has a resistance R. It is cut into...Ch. 19 - Flashlight batteries. A typical small flashlight...Ch. 19 - In the circuit of Figure 19.65. find (a) the...Ch. 19 - Struck by lightning. Lightning strikes can involve...Ch. 19 - Each of the three resistors m Figure 19.66 has a...Ch. 19 - Energy use of homo appliances. An 1800 W toaster,...Ch. 19 - Two identical 1.00 wires are lad side by side aid...Ch. 19 - Three identical resistors are connected in series....Ch. 19 - (a) Calculate the equivalent resistance of the...Ch. 19 - A power plant transmits 150 kW of power to a...Ch. 19 - What must the emf in Figure 19.69e be in order...Ch. 19 - For the circuit shown in Figuro 19.70. if a...Ch. 19 - A 4600 resistor is connected across a charged...Ch. 19 - A capacitor that is initially uncharged is...Ch. 19 - In the circuit shown in Figure 10.71. R it a...Ch. 19 - Spiderweb conductivity. Some types of spiders...Ch. 19 - If the conductivity of the thread results from the...Ch. 19 - Prob. 86PPCh. 19 - In another experiment, a piece of the web is...Ch. 19 - Nerve cells and R - C circuits. The portion of a...Ch. 19 - In a simple model of an axon conducting a nerve...Ch. 19 - Nerve cells and R-C circuits. The portion of a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Check Your Understanding What is the potential on the axis of a nonuniform ring of charge, where the charge den...
University Physics Volume 2
19.(II) What is the net resistance of the circuit connected to the battery in Fig. 19-50?
Physics: Principles with Applications
15. In the Olympic shotput event, an athlete throws the shot with an initial speed of 12.0 m/s at a 40.0° angle...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
40. A 5.0-rn-diameter merry-go-round is initially turning with a
4.0 s period. It slows down and stops in 20 s...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
More Plate Tectonics. Consider a seafloor spreading zone creating 2 centimeters of new crust over its entire 20...
Life in the Universe (4th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the unknown emfx in a potentiometer that balances when Rxis 10.0 O, and balances when Rsis 15.0for a standard 3.000-V emf? (b) The same emfx is placed in the same potentiometer, which now balances when Rsis 15.0for a standard emf of 3.100 V. At what resistance Rxwill the potentiometer balance?arrow_forwardWhen the switch is open in Figure 18.8, power Po is delivered to the resistor R1. When the switch is closed, which of the following is true about the power Pc delivered to R1? (Neglect the internal resistance of the battery.) (a) Pc Po (b) Pc = Po (c) Pc Po Figure 18.8 (Quick Quizzes 18.5 and 18.6)arrow_forwardA battery with = 6.00 V and no internal resistance supplies current to the circuit shown in Figure P27.9. When the double-throw switch S is open as shown in the figure, the current in the battery is 1.00 mA. When the switch is closed in position a, the current in the battery is 1.20 mA. When the switch is closed in position b, the current in the battery is 2.00 mA. Find the resistances (a) R1, (b) R2, and (c) R3. Figure P27.9 Problems 9 and 10.arrow_forward
- With the switch in the circuit of Figure 21.18a open, there is no current in R2. There is current in R1, however, and it is measured with the ammeter at the right side of the circuit. If the switch is closed (Fig. 21.18b), there is current in R2. What happens to the reading on the ammeter when the switch is closed? (a) The reading increases. (b) The reading decreases. (c) The reading does not change.arrow_forward(a) F ind the voltage drop in an extension cord having a 0.0600-O resistance and through which 5.00 A is flowing. (b) A cheaper cord utilizes thinner wire and has a resistance of 0.300 O. What is the voltage drop in it when 5.00 A flows? (c) Why is the voltage to whatever appliance is being used reduced by this amount? What is the effect on the appliance?arrow_forwardThe values of the components in a simple series RC circuit containing a switch (Fig. P21.53) are C = 1.00 F, R = 2.00 106 , and = 10.0 V. At the instant 10.0 s after the switch is closed, calculate (a) the charge on the capacitor, (b) the current in the resistor, (c) the rate at which energy is being stored in the capacitor, and (d) the rate at which energy is being delivered by the battery.arrow_forward
- A child’s electronic toy is supplied by three 1.58-V alkaline cells having internal resistances of 0.0200 in series with a 1.53-V carbon-zinc dry cell having a 0.100- internal resistance. The load resistance is 10.0 . (a) Draw a circuit diagram of the toy and its batteries, (b) What current flows? (c) How much power is supplied to the load? (d) What is the internal resistance of the dry cell if it goes bad, resulting in only 0.500 W being supplied to the load?arrow_forwardAn automobile starter motor has an equivalent resistance of 0.0500 and is supplied by a 12.0-V battery with a 0.0100- internal resistance, (a) What is the current to the motor? (b) What voltage is applied to it? (c) What power is supplied to the motor? (d) Repeat these calculations for when the battery connections are corroded and add 0.0900 to the circuit. (Significant problems are caused by even small amounts of unwanted resistance in low-voltage, high-current applications.)arrow_forwardThe label on a battery-powered radio recommends the use of a rechargeable nickel-cadmium cell (nicads), although it has a 1.25-V emf, whereas an alkaline cell has a 1.58-V emf. The radio has a 3.20 resistance.(a) Draw a circuit diagram of the radio and its battery. Now, calculate the power delivered to the radio (b) when using a nicad cells, each having an internal resistance of 0.0400 , and (c) when using an alkaline cell, having an internal resistance of 0.200 . (d) Does this differenceseem significant, considering that the radio's effective resistance is lowered when its volume is aimed up?arrow_forward
- An automobile starter motor has an equivalent resistance of 0.0500 and is supplied by a 12.0-V battery with a 0.0100- internal resistance, (a) What is thecurrent to the motor? (b) What voltage is applied to it? (c) What power is supplied to the motor? (d) Repeat these calculations for when the battery connections are corroded and add 0.0900 to the circuit. (Significant problems are caused by even small amounts of unwanted resistance in low-voltage, high-current applications.)arrow_forwardThree identical 60.0-W, 120-V lightbulbs are connected across a 120-V power source as shown in Figure P28.72. Assuming the resistance of each lightbulb is constant (even though in reality the resistance might increase markedly with current), find (a) the total power supplied by the power source and (b) the potential difference across each lightbulb.arrow_forwardIntegrated Concepts (a) Assuming 95.0% efficiency for the conversion of electrical power by the motor, what current must the 12.0-V batteries of a 750-kg electric car be able to supply: (a) To accelerate from rest to 25.0 m/s in 1.00 min? (b) To climb a 2.00 102-m- high hill in 2.00 min at a constant 25.0-m/s speed while exerting 5.00 102 N of force to overcome air resistance and friction? (c) To travel at a constant 25.0-m/s speed, exerting a 5.00 102 N force to overcome air resistance and friction? See Figure 20.44.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY